ORIGINAL PAPER
Sustainability assurance optimization-based approach to energy infrastructure diagnostics in energy systems management
 
More details
Hide details
1
V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
 
2
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
 
3
State University of Trade and Economics, Kyiv, Ukraine
 
4
National Transport University, Kyiv, Ukraine
 
5
Interregional Academy of Personnel Management, Kyiv, Ukraine
 
6
Instytut Gospodarki Surowcami Mineralnymi i Energią PAN, Poland
 
 
Submission date: 2024-05-27
 
 
Final revision date: 2024-06-27
 
 
Acceptance date: 2024-07-04
 
 
Publication date: 2024-09-24
 
 
Corresponding author
Michał Kopacz   

Instytut Gospodarki Surowcami Mineralnymi i Energią PAN, Poland
 
 
Polityka Energetyczna – Energy Policy Journal 2024;27(3):109-132
 
KEYWORDS
TOPICS
ABSTRACT
The study examines the factors and risks that affect the operational safety of energy infrastructure. Economic and technical diagnostics were performed, and the causes of equipment (turbine generator) failures were identified in order to develop effective approaches to managing the technical diagnostics of critical energy equipment and ensuring energy efficiency and safety of energy processes. This study presents a methodology for analyzing heat transfer in the stator winding core of turbine generators at South Ukrainian and Khmelnytsky NPPs, which allows us to gain insight into the temperature distribution and suggest ways to optimize thermal processes. The proposed approach facilitates the assessment of the temperature regime, identification of overheating risks and formulation of emergency measures. The results of the analysis of Khmelnytskyi NPP (Unit 2) and South Ukrainian NPP (Unit 1) showed that at Khmelnytskyi NPP the heat transfer parameters are within the permissible values for all rods, and at South Ukrainian NPP, the heat transfer parameter in rods 13 and 23 is 0 W, which requires immediate intervention to ensure the safety of further operation. This approach allows for timely response to power unit failures, ensuring safety and efficient management of power equipment operation and ensuring the continuous stable operation of the energy infrastructure with maximum efficiency. Further research will focus on the development of methods for predicting the stable operation of the power system based on preliminary technical assessments and thermal and mechanical analysis, which will allow for making science-based decisions on the stability of NPP equipment.
METADATA IN OTHER LANGUAGES:
Polish
Podejście do diagnostyki infrastruktury energetycznej w zarządzaniu systemami energetycznymi oparte na optymalizacji zapewnienia zrównoważonego rozwoju
zrównoważone bezpieczeństwo energetyczne, technologia energetyczna, infrastruktura energetyczna, systemy przesyłu ciepła, efektywność energetyczna
W zaprezentowanych wynikach badań przeanalizowano czynniki i zagrożenia wpływające na bezpieczeństwo eksploatacji infrastruktury energetycznej. Przeprowadzono schematy diagnostyki technicznej i ekonomicznej oraz zidentyfikowano przyczyny awarii urządzeń (turbiny generatora) w celu opracowania skutecznych podejść do zarządzania diagnostyką techniczną krytycznych urządzeń energetycznych oaz zapewnienia efektywności energetycznej i bezpieczeństwa procesów energetycznych. W artykule zaprezentowano metodykę analizy wymiany ciepła w rdzeniu uzwojenia stojana turbiny generatorów w elektrowniach jądrowych południowo-ukraińskiej i chmielnickiej, co pozwoliło nam uzyskać wgląd w rozkład temperatur i zaproponowanie sposobów optymalizacji procesów cieplnych. Proponowane podejście ułatwia ocenę reżimu temperaturowego, identyfikację ryzyka przegrzania i przygotowanie środków awaryjnych. Wyniki analizy Chmielnickiej Elektrowni Jądrowej (Blok 2) i Południowo-ukraińskiej Elektrowni Jądrowej (Blok 1) wykazały, że w Chmielnickiej Elektrowni Jądrowej parametry wymiany ciepła mieszczą się w dopuszczalnych granicach dla wszystkich prętów. W Południowo-ukraińskiej Elektrowni Jądrowej parametr wymiany ciepła w prętach 13 i 23 wynosi 0 W, co wymaga natychmiastowej interwencji w celu zapewnienia bezpieczeństwa dalszej eksploatacji. Zaproponowane podejście pozwala na szybką reakcję na awarie bloków energetycznych, zapewniając bezpieczeństwo i efektywne zarządzanie pracą urządzeń energetycznych oraz ciągłą stabilną pracę infrastruktury energetycznej z maksymalną wydajnością. Dalsze badania będą koncentrować się na opracowaniu metod diagnozy pracy systemu elektroenergetycznego w oparciu o wstępne oceny techniczne oraz analizę cieplną i mechaniczną, co pozwoli na podejmowanie opartych na wiedzy decyzji w zakresie stabilizowania pracy urządzeń elektrowni jądrowej.
 
REFERENCES (54)
1.
Adamantiades, A. and Kessides, I. 2009. Nuclear power for sustainable development: Current status and future prospects. Energy Policy 37(12), pp. 5149–5166, DOI: 10.1016/j.enpol.2009.07.052.
 
2.
Andersson et al. 2021 – Andersson, C., Broberg, C., Kaskal, K. and Sonesson, M. 2021. Portfolio construction and new energy infrastructure investing. The Journal of Impact and ESG Investing 2(2), pp. 57–76, DOI: 10.3905/jesg.2021.1.033.
 
3.
Blázquez et al. 2023 – Blázquez, C.S., Borge-Diez, D., Nieto, I.M., Martín, A.F. and González-Aguilera, D. 2023. Multiparametric Evaluation of Electrical, Biogas and Natural Gas Geothermal Source Heat Pumps. [In:] Geothermal Heat Pump Systems, pp. 103–122, doi: 10.1007/978-3-031-24524-4_4.
 
4.
Chen et al. 2023 – Chen, P., Tong, J. and Liu, T. 2023. Solving the issue of reliability data for FOAK equipment in an innovative nuclear energy system. Progress in Nuclear Energy 163, DOI: 10.1016/j.pnucene.2023.104817.
 
5.
Chupryna et al. 2022 – Chupryna, I., Tormosov, R., Abzhanova, D., Ryzhakov, D., Gonchar, V. and Plys, N. 2022. Scientific and Methodological Approaches to Risk Management of Clean Energy Projects Implemented in Ukraine on the Terms of Public-Private Partnership. [In:] Proceedings of the 2022 International Conference on Smart Information Systems and Technologies (SIST); IEEE, pp. 1–8, DOI: 10.1109/SIST54437.2022.9945809.
 
6.
Ciattaglia et al. 2019 – Ciattaglia, S., Federici, G., Barucca, L., Stieglitz, R. and Taylor, N. 2019. EU DEMO safety and balance of plant design and operating requirements. Issues and possible solutions. Fusion Engineering and Design 146(B), 2184–2188, DOI: 10.1016/j.fusengdes.2019.03.149.
 
7.
Ciuła et al. 2023a – Ciuła, J., Kowalski, S., Generowicz, A., Barbusiński, K., Matuszak, Z. and Gaska, K. 2023. Analysis of Energy Generation Efficiency and Reliability of a Cogeneration Unit Powered by Biogas. Energies 16(5), DOI: 10.3390/en16052180.
 
8.
Ciuła et al. 2023b – Ciuła, J., Kowalski, S. and Wiewiórska, I. 2023. Pollution Indicator of a Megawatt Hour Produced in Cogeneration – the Efficiency of Biogas Purification Process as an Energy Source for Wastewater Treatment Plants. Journal of Ecological Engineering 24(3), pp. 232–245, DOI: 10.12911/22998993/158562.
 
9.
Csereklyei et al. 2016 – Csereklyei, Z., Thurner, P.W., Bauer, A. and Küchenhoff, H. 2016. The effect of economic growth, oil prices, and the benefits of reactor standardization: Duration of nuclear power plant construction revisited. Energy Policy 91, pp. 49–59, DOI: 10.1016/j.enpol.2015.12.032.
 
10.
Di Pillo et al. 2020 – Di Pillo, F., Levialdi, N. and Marchegiani, L., 2020. The investments in energy distribution networks: Does company ownership matter? International Journal of Energy Economics and Policy 10(5), pp. 41–49, DOI: 10.32479/ijeep.9511.
 
11.
Dobaj et al. 2019 – Dobaj, J., Schmittner, C., Krisper, M. and Macher, G. 2019. Towards Integrated Quantitative Security and Safety Risk Assessment. [In:] Computer Safety, Reliability, and Security. Lecture Notes in Computer Science (LNPSE) 11699, pp. 102–116.
 
12.
Edomah, N. 2015. An Analysis of the Techno-Economic Dynamics of Energy Infrastructure Investment. International Energy Journal 15(2), pp. 83–92.
 
13.
Elbayoumi, A. and Tahvonen, T., 2022. Novel methodology for functional design chain analysis of a nuclear power plant: A new built Finnish power plant case study. Nuclear Engineering and Design 393, DOI: 10.1016/j.nucengdes.2022.111795.
 
14.
Fang et al. 2021 – Fang, S., Zhou, P., Dinçer, H., and Yüksel, S. 2021. Assessment of Safety Management System on Energy Investment Risk Using House of Quality Based on Hybrid Stochastic Interval-Valued Intuitionistic Fuzzy Decision-Making Approach. Safety Science 141, DOI: 10.1016/j.ssci.2021.105333.
 
15.
Gaska et al. 2019 – Gaska, K., Generowicz, A., Lobur, M., Jaworski, N., Ciuła, J. and Vovk, M. 2019. Advanced algorithmic model for poly-optimization of biomass fuel production from separate combustible fractions of municipal wastes as a progress in improving energy efficiency of waste utilization. E3S Web of Conferences 122, DOI: 10.1051/e3sconf/201912201004.
 
16.
Gaska, K. and Generowicz, A. 2020. SMART Computational Solutions for the Optimization of Selected Technology Processes as an Innovation and Progress in Improving Energy Efficiency of Smart Cities – A Case Study. Energies 13(13), DOI: 10.3390/en13133338.
 
17.
Gaska et al. 2023 – Gaska, K., Generowicz, A., Gronba-Chyła, A., Ciuła, J., Wiewiórska, I., Kwaśnicki, P., Mala, M. and Chyła, K. 2023. Artificial Intelligence Methods for Analysis and Optimization of CHP Cogeneration Units Based on Landfill Biogas as a Progress in Improving Energy Efficiency and Limiting Climate Change. Energies 16(15), DOI: 10.3390/en16155732.
 
18.
Gupta et al. 2019 – Gupta, K., Nowlin, M.C., Ripberger, J.T., Jenkins-Smith, H.C. and Silva, C.L. 2019. Tracking the nuclear ‘mood’ in the United States: Introducing a long term measure of public opinion about nuclear energy using aggregate survey data. Energy Policy 133, DOI: 10.1016/j.enpol.2019.110888.
 
19.
Gupta et al. 2021 – Gupta, K., Ripberger, J.T., Fox, A.S., Jenkins-Smith, H.C. and Silva, C.L. 2021. The future of nuclear energy in India: Evidence from a nationwide survey. Energy Policy 156, DOI: 10.1016/j.enpol.2021.112388.
 
20.
Hallowell et al. 2017 – Hallowell, M.R., Alexander, D. and Gambatese, J.A. 2017. Energy-Based Safety Risk Assessment: Does Magnitude and Intensity of Energy Predict Injury Severity? Construction Management and Economics 35(1–2), pp. 64–77, DOI: 10.1080/01446193.2016.1274418.
 
21.
Hrinchenko et al. 2023 – Hrinchenko, H., Koval, V., Shmygol, N., Sydorov, O., Tsimoshynska, O. and Matuszewska, D. 2023. Approaches to Sustainable Energy Management in Ensuring Safety of Power Equipment Operation. Energies 16(18), DOI: 10.3390/en16186488.
 
22.
Hrinchenko et al 2024 – Hrinchenko, H., Prokopenko, O., Shmygol, N., Koval, V., Filipishyna, L., Palii, S. and Cioca, L.-I. 2024. Sustainable Energy Safety Management Utilizing an Industry-Relative Assessment of Enterprise Equipment Technical Condition. Sustainability 16(2), DOI: 10.3390/su16020771.
 
23.
Hózer et al. 2023 – Hózer, M., Adorni, A., Arkoma, V., Busser, B., Bürger, K., Dieschbourg, R., Farkas, N., Girault, L.E., Herranz, R., Iglesias, M., Jobst, A., Kecek, C., Leclere, R., Lishchuk, M., Massone, N., Müllner, S., Sholomitsky, E., Slonszki, P., Szabó, T., Taurines, R. and Zimmerl 2023. Review of experimental database to support nuclear power plant safety analyses in SGTR and LOCA domains. Annals of Nuclear Energy 193, DOI: 10.1016/j.anucene.2023.110001.
 
24.
Ji et al. 2022 – Ji, Z., Su, H., Wang, Y., Cao, Y. and Yang, S. 2022. Assessing the Risk of Hazards with Multidimensional Consequences for Industrial Processes. Processes 10(6), DOI: 10.3390/pr10061145.
 
25.
Kharazishvili et al. 2023 – Kharazishvili, Y., Lyashenko, V., Bugayko, D., Ustinova, I., Shevchenko, O. and Kalinin, O. 2023. Justification of the Identification of Threats and Problematic Components of Sustainable Regional Development in the Security Dimension. E3S Web Conferences 408, DOI: 10.1051/e3sconf/202340801028.
 
26.
Kharchenko et al. 2021 – Kharchenko, V.V., Chirkov, O.Y., Kobel’s’kyi, S.V., Kravchenko, V.I. and Zvyagintseva, A. O. 2021. Application of Refined Calculation Guidelines to the Stress-Strain State and Fracture Resistance Analysis of the NPP Primary-Circuit System Elements. Strength of Materials 53(6), pp. 824–833, DOI: 10.1007/s11223-022-00349-8.
 
27.
Kim, K. and Kim, H.J. 1987. Numerical approach for cocurrent stratified steam water flow in a horizontal configuration. KSME Journal 1, pp. 158–166, DOI: 10.1007/BF02971660.
 
28.
Kowalski et al. 2012 – Kowalski, Z., Generowicz, A. and Makara, A. 2012. Evaluation of municipal waste disposal technologies by BATNEEC (Ocena technologii składowania odpadów komunalnych metodą BATNEEC). Przemysł Chemiczny 91(5), pp. 811–815 (in Polish).
 
29.
Králik, J. 2017. Actual Problems of the Safety and Reliability of the NPP Structures in Slovakia. Key Engineering Materials 738, pp. 261–272, DOI: 10.4028/www.scientific.net/KEM.738.261.
 
30.
Kuzmynchuk et al. 2024 – Kuzmynchuk, N., Kutsenko, T., Aloshyn, S. and Terovanesova, O. 2024. Energy Marketing and Fiscal Regulation of a Competitive Energy Efficiency System. Economics Ecology Socium 8, pp. 112–121.
 
31.
Lee, S.H. and Kang, H.G. 2016. Integrated framework for the external cost assessment of nuclear power plant accident considering risk aversion: The Korean case. Energy Policy 92, pp. 111–123, DOI: 10.1016/j.enpol.2016.01.035.
 
32.
Li et al. 2022 – Li, X., Han, D., Dai, X., Lv, S., Tao, M., Zheng, W. and Tang, Y. 2022. Fault Diagnosis to Nuclear Power Plant System Based on Time-Series Convolution Neural Network. Wireless Communications and Mobile Computing, pp. 1–14, DOI: 10.1155/2022/3323239.
 
33.
Lind et al. 2019 – Lind, T., Guentay, S., Herranz, L.E. and Suckow, D. 2019. A summary of the ARTIST: Aerosol retention during SGTR severe accident. Annals of Nuclear Energy 131, pp. 385–400, DOI: 10.1016/j.anucene.2019.04.006.
 
34.
Liu et al. 2023 – Liu, T., Wu, Z., Bensi, M. and Ma, Z. 2023. A mechanistic model of a PWR-based nuclear power plant in response to external hazard-induced station blackout accidents. Frontiers in Energy Research 11, DOI: 10.3389/fenrg.2023.1191467.
 
35.
Meyer, R.O. and Wiesenack, W. 2022. A critique of fuel behavior in LOCA safety analyses and a proposed alternative. Nuclear Engineering and Design 394, DOI: 10.1016/j.nucengdes.2022.111816.
 
36.
Merk et al. 2023 – Merk, B., Litskevich, D., Detkina, A., Noori-kalkhoran, O., Jain, L., Derrer-Merk, E., Aflyatunova, D. and Cartland-Glover, G. 2023. Imagine – Visions, Missions, and Steps for Successfully Delivering the Nuclear System of the 21st Century. Energies 16(7), DOI: 10.3390/en16073120.
 
37.
Moa, E.H.Y. and Go, Y.I. 2023. Large-Scale Energy Storage System: Safety and Risk Assessment. Sustainable Energy Research 10, DOI: 10.1186/s40807-023-00082-z.
 
38.
NBU 2023. National Bank of Ukraine. External Sector Statistics, 2023. [Online] https://bank.gov.ua/en/statist... [Accessed: 2024-04-15].
 
39.
Olczak et al. 2023 – Olczak, P., Koval, V., Yanovska, V. and Lomachynska, I., 2023. The Use of Electricity Storage on the Path to Prosumer Energy Self-sufficiency: Eastern Europe Case Study. Green Energy and Technology. Springer, Cham. DOI: 10.1007/978-3-031-30800-0_2.
 
40.
Pandey, V. 2020. Energy infrastructure for sustainable development. [In:] Encyclopedia of the UN Sustainable Development Goals, pp. 1–13, Springer International Publishing.
 
41.
Qi et al. 2021 – Qi, M., Liu, Y., Landon, R.S., Liu, Y. and Moon, I. 2021. Assessing and Mitigating Potential Hazards of Emerging Grid-Scale Electrical Energy Storage Systems. Process Safety and Environmental Protection 149, pp. 994–1016, DOI: 10.1016/j.psep.2021.03.042.
 
42.
Riemersma et al. 2020 – Riemersma, B., Künneke, R., Reniers, G. and Correljé, A. 2020. Upholding Safety in Future Energy Systems: The Need for Systemic Risk Assessment. Energies 13(24), DOI: 10.3390/en13246523.
 
43.
Savina et al. 2021 – Savina, N., Sribna, Y., Pitel, N., Parkhomenko, L., Osipova, A. and Koval, V. 2021. Energy management decarbonization policy and its implications for national economies. IOP Conference Series: Earth and Environmental Science 915, DOI: 10.1088/1755-1315/915/1/012007.
 
44.
Sharma, P. and Bandyopadhyay, S. 2023. A Quantitative Framework for Sustainability Assessment. Clean Technologies and Environmental Policy 25(9), pp. 2971–2985, DOI: 10.1007/s10098-023-02541-z.
 
45.
Shvydanenko et al. 2023 – Shvydanenko, H., Shvydanenko, O., Duginets, G., Boichenko, K. and Busarieva, T. 2023. The impact of green finance on renewable energy consumption in the Covid-19 pandemic. [In:] Sustainable Finance and the Global Health Crisis, Edited by Falcone P.M, Sica E.
 
46.
Sotnyk et al. 2021 – Sotnyk, I., Kurbatova, T., Kubatko, O., Prokopenko, O., Prause, G., Kovalenko, Y., Trypolska, G. and Pysmenna, U. 2021. Energy Security Assessment of Emerging Economies under Global and Local Challenges. Energies 14(18), doi: 10.3390/en14185860.
 
47.
Sun et al. 2022 – Sun, L. Lv, Y. Li, L. and Sun, B. 2022. An Operation Risk Analysis Method Based on Feature Association Rule Mining Algorithm for Power System with High Proportion Renewable Energy. [In:] Proceedings of the 2022 IEEE 5th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), IEEE 5, pp. 1858–1862.
 
48.
Sýkora et al. 2018 – Sýkora, M., Marková, J. and Diamantidis, D. 2018. Bayesian Network Application for the Risk Assessment of Existing Energy Production Units. Reliability Engineering & System Safety 169, pp. 312–320, DOI: 10.1016/j.ress.2017.09.006.
 
49.
Taylor et al. 2019 – Taylor, N., Ciattaglia, S., Coombs, D., Jin, X.Z., Johnston, J., Liger, K., Mazzini, G. and Widdowson, A., 2019. Safety and environment studies for a European DEMO design concept. Fusion Engineering and Design 146(A), pp. 111–114, DOI: 10.1016/j.fusengdes.2018.11.049.
 
50.
Todorov et al. 2023 – Todorov, L., Aleksandrova, A. and Ismailov, T. 2023. Relation Between Financial Literacy and Carbon Footprint: Review on Implications for Sustainable Development. Economics Ecology Socium 7(2), pp. 24–40, DOI: 10.31520/2616-7107/2023.7.2-2.
 
51.
UKRSTAT 2023. State Statistics Service of Ukraine. Availability and movement of non-current assets, depreciation, 2023. [Online] https://ukrstat.gov.ua/operati... [Accessed: 2024-06-20].
 
52.
Xu, H. and Zhang, B. 2022. Diverse and Flexible Coping Strategy for Nuclear Safety: Opportunities and Challenges. Energies 15(17), DOI: 10.3390/en15176275.
 
53.
Zaher et al. 2012 – Zaher, N.L., Joyce, R.P. and Snow, R.S. 2012. Economic analysis of grid infrastructure. Patent, 8751291. [Online] https://patents.justia.com/pat... [Accessed: 2024-07-22].
 
54.
Zhen et al. 2019 – Zhen, L., Huang, L. and Wang, W. 2019. Green and Sustainable Closed-Loop Supply Chain Network Design under Uncertainty. Journal of Cleaner Production 227, pp. 1195–1209, DOI: 10.1016/j.jclepro.2019.04.098.
 
eISSN:2720-569X
ISSN:1429-6675
Journals System - logo
Scroll to top