ORIGINAL PAPER
Managing the power supply energy efficiency by means of higher harmonics
 
More details
Hide details
1
Department of Power Engineering, Dnipro University of Technology, Ukraine
 
2
Scientific Research Institute of the Center of Renewable Energy and Energy Efficiency, Universidad Nacional de San Agustin de Arequipa, Peru
 
3
Faculty of Electrical Engineering, Wroclaw University of Science and Technology, Poland
 
4
KOMAG Institute of Mining Technology, Poland
 
5
Management Department, AGH University of Science and Technology, Kraków, Poland
 
6
Management and Administration, Ivano-Frankivsk National Technical University of oil and Gas Ivano-Frankivsk, Ukraine
 
 
Submission date: 2023-12-02
 
 
Final revision date: 2024-07-08
 
 
Acceptance date: 2024-07-30
 
 
Publication date: 2024-12-11
 
 
Corresponding author
Alla Polyanska   

Management Department, AGH University of Science and Technology, Kraków, Poland
 
 
Polityka Energetyczna – Energy Policy Journal 2024;27(4):59-80
 
KEYWORDS
TOPICS
ABSTRACT
The paper proposes an innovative solution for managing and ensuring high energy efficiency of power supply systems at high non-linear loads (the problem of non-sinusoidal voltage makes up more than 50% of electricity losses). This is realised by maintaining optimal value of reliability indicators and high quality of power supply. The validation is carried out using analyses and tests of the quality of electromagnetic compatibility (EMC) for an increased number of powered frequency converters. It has been proven that the effective use and reduction of energy consumption can be achieved thanks to the unique technological features of the employed electrical devices. This enables a normal operation of the system with decreased power and adequate control of energy processes. The problem of predicting power losses under changing conditions in a decentralised electrical network has been solved based on the theory of electromagnetic compatibility. The influence of the mains mode parameters and the indices of instantaneous distortion of current and voltage waveforms caused by the operation of converters on the resonance phenomena in power supply systems were investigated. Recommendations were developed for the selection of proper parameters of compensators for 6–10 kV and 0.4–0.66 kV circuits based on the analysis of the optimisation problem when minimising active power losses. The results of our findings may aid parties involved in designing and maintaining power networks in various applications, such as mines, etc. Decisions to improve the energy efficiency of electrical networks fully correspond to the Concept of ensuring energy security of Ukraine.
METADATA IN OTHER LANGUAGES:
Polish
Zarządzanie efektywnością energetyczną zasilania za pomocą wyższych harmonicznych
efektywność energetyczna, zarządzanie systemami zasilania, przetwornice, częstotliwości, wyższe harmoniczne, interharmoniczne
W artykule zaproponowano innowacyjne rozwiązanie zarządzania i zapewnienia wysokiej efektywności energetycznej systemów zasilania przy dużych obciążeniach nieliniowych (problem napięcia niesinusoidalnego stanowi ponad 50% strat energii elektrycznej). Jest to realizowane poprzez utrzymanie optymalnej wartości wskaźników niezawodności i wysokiej jakości zasilania. Walidacja jest przeprowadzana za pomocą analiz i badań jakości kompatybilności elektromagnetycznej (EMC) dla zwiększonej liczby zasilanych przemienników częstotliwości. Udowodniono, że efektywne wykorzystanie i zmniejszenie zużycia energii można osiągnąć dzięki unikalnym cechom technologicznym zastosowanych urządzeń elektrycznych. Umożliwia to normalną pracę systemu przy zmniejszonej mocy i odpowiednią kontrolę procesów energetycznych. Problem przewidywania strat mocy w zmiennych warunkach w zdecentralizowanej sieci elektrycznej został rozwiązany w oparciu o teorię kompatybilności elektromagnetycznej. Zbadano wpływ parametrów trybu sieciowego i wskaźników chwilowych zniekształceń przebiegów prądu i napięcia wywołanych pracą przemienników na zjawiska rezonansowe w systemach zasilania. Opracowano zalecenia dotyczące doboru właściwych parametrów kompensatorów dla obwodów 6–10 kV i 0,4–0,66 kV na podstawie analizy problemu optymalizacji przy minimalizacji strat mocy czynnej. Wyniki naszych ustaleń mogą pomóc stronom zaangażowanym w projektowanie i utrzymanie sieci energetycznych w różnych zastosowaniach, takich jak kopalnie itp. Decyzje dotyczące poprawy efektywności energetycznej sieci elektrycznych w pełni odpowiadają Koncepcji zapewnienia bezpieczeństwa energetycznego Ukrainy.
REFERENCES (39)
1.
Beshta, O.S. 2012. Electric drives adjustment for improvement of energy efficiency of technological processes. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 4, pp. 98–107.
 
2.
Dvorský et al. 2023 – Dvorský, J., Bednarz, J. and Blajer-Gołębiewska, A. 2023. The impact of corporate reputation and social media engagement on the sustainability of SMEs: Perceptions of top managers and the owners. Equilibrium. Quarterly Journal of Economics and Economic Policy 18(3), pp. 779–811, DOI: 10.24136/eq.2023.025.
 
3.
Dychkovskyi, R.O. 2015a. Determination of the rock subsidence spacing in the well underground coal gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 6, pp. 30–36.
 
4.
Dychkovskyi, R.O. 2015b. Forming the bilayer artificially created shell of georeactor in underground coal well gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 5, pp. 37–42.
 
5.
Dychkovskyi et al. 2021 – Dychkovskyi, R., Tabachenko, M., Zhadiaieva, K., Dyczko, A. and Cabana, E. 2021. Gas hydrates technologies in the joint concept of geoenergy usage. E3S Web Conferences 230, DOI: 10.1051/e3sconf/202123001023.
 
6.
Dyczko, A. 2023. Real-time forecasting of key coking coal quality parameters using neural networks and artificial intelligence. Rudarsko-Geološko-Naftni Zbornik 38(3), pp. 105–117, DOI: 10.17794/rgn.2023.3.9.
 
7.
Figiel, A. 2020. Technical safety of machinery and equipment in the aspect of the activities of the KOMAG Division of Attestation Tests, Certifying Body. Mining Machines 1, pp. 2–8, DOI: 10.32056/KOMAG2020.1.1.
 
8.
Golovchenko et al. 2018 – Golovchenko, A., Pazynich, Y. and Potempa, M. 2018. Automated monitoring of physical processes of formation of burden material surface and gas flow in blast furnace. Solid State Phenomena 277, pp. 54–65, DOI: 10.4028/www.scientific.net/SSP.277.54.
 
9.
Golovchenko et al. 2020 – Golovchenko, A., Dychkovskyi, R., Pazynich, Y., Edgar, C.C., Howaniec, N., Jura, B. and Smoliński, A. 2020. Some aspects of the control for the radial distribution of burden material and gas flow in the blast furnace. Energies 13(4), DOI: 10.3390/en13040923.
 
10.
Kamiński et al. 2021 – Kamiński, P., Dyczko, A. and Prostański, D. 2021. Virtual simulations of a new construction of the artificial shaft bottom (Shaft safety platform) for use in mine shafts. Energies 14(8), DOI: 10.3390/en14082110.
 
11.
Khomenko et al. 2023 – Khomenko, O., Kononenko, M., Myronova, I., Kovalenko, I. and Cabana, E.C. 2023. Technology for increasing the level of environmental safety of iron ore mines with use of emulsion explosives. Mining Machines 41(1), pp. 48–57, DOI: 10.32056/KOMAG2023.1.5.
 
12.
Kliestik et al. 2023 – Kliestik, T., Nica, E., Durana, P. and Popescu, G.H. 2023. Artificial intelligence-based predictive maintenance, time-sensitive networking, and big data-driven algorithmic decision-making in the economics of Industrial Internet of Things. Oeconomia Copernicana 14(4), pp. 1097–1138, doi: 10.24136/oc.2023.033.
 
13.
Kolb et al. 202 – Kolb, A., Pazynich, Y., Mirek, A. and Petinova, O. 2020. Influence of voltage reserve on the parameters of parallel power active compensators in mining. E3S Web Conferences 201, DOI: 10.1051/e3sconf/202020101024.
 
14.
Kosobudzki, G. and Florek, A. 2017. EMC requirements for power drive systems. Power Electronics and Drives 37(2), pp. 127–135, DOI: 10.5277/PED170207.
 
15.
Kosobudzki et al. 2018 – Kosobudzki, G., Rogoza, M., Lysenko, O. and Papaika, Y. 2018. Frequency and parametric characteristics of direct current pulse conversion filter of a contactless electric locomotive. [In:] Proceedings of the 14th Selected Issues of Electrical Engineering and Electronics (WZEE), Szczecin, Poland.
 
16.
Malec, M. and Zając, R. 2021 – Harmonization of technical requirements in the scope of machines for underground mines. Mining Machines 39(2), pp. 44–52, DOI: 10.32056/KOMAG2021.2.5.
 
17.
Manat, S.M. and Yugay, V.V. 2021. Power quality analysis study of single phase inverter. Engineering Journal of Satbayev University 143(4), pp. 159–164, DOI: 10.51301/vest.su.2021.i4.20.
 
18.
Markevych et al. 2022 – Markevych, K., Maistro, S., Koval, V. and Paliukh, V. 2022. Mining sustainability and circular economy in the context of economic security in Ukraine. Mining of Mineral Deposits 16(1), pp. 101–113, DOI: 10.33271/mining16.01.101.
 
19.
Mustafin et al. 2021 – Mustafin, M., Almuratova, N., Darimbayeva, N. and Daurenovam, G. 2021. Mathematical model of asynchronous frequency controlled electric drive for different types of load. Engineering Journal of Satbayev University 143(2), pp. 199–206, DOI: 10.51301/vest.su.2021.i2.26 143(2).
 
20.
Papaika et al. 2017 – Papaika, Y., Lysenko, O. and Kosobudzki, G. 2017. Power quality and resonances in power supply systems with non-sinusoidal loads. Advanced Engineering Forum 25, pp. 143–150.
 
21.
Papaika et al. 2018 – Papaika, Y., Pivnyak, G. and Zhezhelenko, I. 2018. Energetychna efectyvnist system electropostachannya. Dnipro University of Technology: Dnipro, Ukraine.
 
22.
Papaika et al. 2020 – Papaika, Y.A., Lysenko, O., Rodna, K. and Shevtsova, O. 2020. Information technologies in modeling operation modes of mining dewatering plant based on economic and mathematical analysis. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 4, pp. 82–87, DOI: 10.33271/nvngu/2020-4/082.
 
23.
Papaika et al. 2021 – Papaika, Y., Lysenko, O., Koshelenko, Y. and Olishevskyi, I. 2021. Mathematical modeling of power supply reliability at low voltage quality. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 2, pp. 97–103, DOI: 10.33271/nvngu/2021-2/097.
 
24.
Pivniak et al. 2012 – Pivniak, H.H., Pilov, P.I., Pashkevych, M.S. and Shashenko, D.O. 2012. Synchro-mining: Civilized solution of problems of mining regions’ sustainable operation. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 3, pp. 131–138.
 
25.
Pivnyak et al. 2013 – Pivnyak, G., Zhezhelenko, I. and Papaika, Y. (eds) 2013. Energy efficiency improvement of geotechnical systems. CRC Press: Boca Raton, Florida, US.
 
26.
Pivnyak et al. 2016a – Pivnyak, G.G., Zhezhelenko, I.V. and Papaika, Y.A. 2016. Transients in electric power supply systems. Trans Tech Publications LTD: Pfaffikon, Switzerland.
 
27.
Pivnyak et al. 2016b – Pivnyak, G., Zhezhelenko, I. and Papaika, Y. 2016. Estimating economic equivalent of reactive power in the systems of enterprise power supply. Scientific Bulletin of the National Mining University 5, pp. 62–66.
 
28.
Pivnyak et al. 2017 – Pivnyak, G., Zhezhelenko, I. and Papaika, Y. 2017. A. Lysenko. Interharmonics in power supply systems. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 6, pp. 109–114.
 
29.
Polyanska et al. 2022 – Polyanska, A., Savchuk, S., Dudek, M., Sala, D., Pazynich, Y. and Cicho, D. 2022. Impact of digital maturity on sustainable development effects in energy sector in the condition of Industry 4.0. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 6, pp. 97–103, DOI: 10.33271/nvngu/2022-6/097.
 
30.
Popescu et al. 2020 – Popescu, F.G., Pasculescu, D., Marcu, M.D. and Pasculescu, V.M. 2020. Analysis of current and voltage harmonics introduced by the drive systems of a bucket wheel excavator. Mining of Mineral Deposits 14(4), pp. 40–46, DOI: 10.33271/mining14.04.040.
 
31.
Sala, D. and Bieda, B. 2022. Application of uncertainty analysis based on Monte Carlo (MC) simulation for life cycle inventory (LCI). Inżynieria Mineralna 2(2), DOI: 10.29227/im-2019-02-80.
 
32.
Seheda et al. 2024 – Seheda, M.S., Beshta, O.S., Gogolyuk, P.F., Blyznak, Yu.V., Dychkovskyi, R.D. and Smoliński, A. 2024. Mathematical model for the management of the wave processes in three-winding transformers with consideration of the main magnetic flux in mining industry. Journal of Sustainable Mining 23(1), pp. 20–39, DOI: 10.46873/2300-3960.1402.
 
33.
Sinchuk et al. 2021 – Sinchuk, O., Sinchuk, I., Beridze, T., Filipp, Y., Budnikov, K., Dozorenko, O. and Strzelecki, R. 2021. Assessment of the factors influencing on the formation of energy-oriented modes of electric power consumption by water-drainage installations of the mines. Mining of Mineral Deposits 15(4), pp. 25–33, DOI: 10.33271/mining15.04.025.
 
34.
Sinchuk et al. 2022 – Sinchuk, O., Strzelecki, R., Sinchuk, I., Веridzе, T., Fedotov, V., Baranovskyi, V. and Budnikov, K. 2022. Mathematical model to assess energy consumption using water inflow-drainage system of iron-ore mines in terms of a stochastic process. Mining of Mineral Deposits 16(4), pp. 19–28, DOI: 10.33271/mining16.04.019.
 
35.
Thanh, L.X. and Bun, H.V. 2021. Identifying the efficiency decrease factor of motors working under power harmornic in 660V electric mining grids. Mining of Mineral Deposits 15(4), pp. 108–113, DOI: 10.33271/mining15.04.108.
 
36.
Thanh, L.X. and Bun, H.V. 2022. Identifying the factors influencing the voltage quality of 6kV grids when using electric excavators in surface mining. Mining of Mineral Deposits 16(2), pp. 73–80, DOI: 10.33271/mining16.02.073.
 
37.
Vladyko et al. 2022 – Vladyko, O., Maltsev, D., Sala, D., Cichoń, D., Buketov, V. and Dychkovskyi, R. 2022. Simulation of leaching processes of polymetallic ores using the similarity theorem. Rudarsko-Geološko-Naftni Zbornik 37(5), pp. 169–180, DOI: 10.17794/rgn.2022.5.14.
 
38.
Węgrzyn et al. 2022 – Węgrzyn, A., Spirydowicz, A. and Grebski, Wes. 2022. Dilemmas of the energy transformation in Poland 2021/2022. Mining Machines 1, pp. 32–42, DOI: 10.32056/KOMAG2022.1.4.
 
39.
Zhezhelenko et al. 2016 – Zhezhelenko, I.V., Shidlovskyi, A.K., Pivnyak, G.G. and Saenko, Y.L. 2016. Electromagnetic compatibility in power supply system. NMU Dnipro, Textbook.
 
eISSN:2720-569X
ISSN:1429-6675
Journals System - logo
Scroll to top