ORIGINAL PAPER
Enhancing the coefficient of performance (COP) of mini refrigerators based on thermoelectric units (Peltier)
 
More details
Hide details
1
Mechanical Engineering Department, National Research Centre, Egypt
 
2
Electrical Engineering Department, Helwan university, Egypt
 
 
Submission date: 2023-10-04
 
 
Final revision date: 2024-03-12
 
 
Acceptance date: 2024-04-05
 
 
Publication date: 2024-09-24
 
 
Corresponding author
Amal Mahdy Elnaggar   

Mechanical Engineering Department, National Research Centre, ElBoohos street, Giza, Egypt
 
 
Polityka Energetyczna – Energy Policy Journal 2024;27(3):133-160
 
KEYWORDS
TOPICS
ABSTRACT
Energy scarcity in the world and the pollutants resulting from excessive use of energy lead to an increase in global warming. There is a need to search for sustainable alternatives that use less energy to reduce environmental problems as well as alternatives to the use of Freon, which is harmful to the environment, one of the most dangerous pollutants, and increases the ozone hole. The current research aims to investigate the performance of thermoelectric refrigerators with different operating conditions. A portable thermoelectric refrigerator was developed for those living in remote areas of Egypt off the electrical grid (e.g., deserts). The designed refrigerator is based on the Peltier effect using Peltier units. The refrigerator is designed, manufactured, and experimentally tested. Several variables were studied in fast cooling systems for different conditions to minimize time, decrease the cooling temperature, and increase the coefficient of performance (COP) by the response surface methodology (RSM) model. The results reveal that the obtained maximum COP was 77.3%, at 4 V and 1.006 with a difference in cooling temperature (∆T) of 8°C. The highest ∆T was 26.4°C at 10 V, 9.149 A, 91.49 W and COP 11.2%. The optimum condition was cooling temperature 12.7°C, COP 51.4% at 4 V, 3.445 A by using 4 Peltier, according to Response surface methodology (RSM) includes optimization procedures for the settings of factorial variables by design expert 13, such that maximum ∆T was 20.3°C and maximum COP 49.576% with 4 volts, 4 no. of Peltier and current 3.601 A in the value range. The results reveal that the obtained determination coefficient for ∆T and the COP adjusted R2 and R3 values 0.9286 and 0.9603 respectively.
METADATA IN OTHER LANGUAGES:
Polish
Poprawa współczynnika wydajności (COP) minilodówek opartych na jednostkach termoelektrycznych (Peltiera)
COP, efektywność energetyczna, zanieczyszczenie środowiska, magazynowanie ciepła, jednostka termoelektryczna
Niedobór energii na świecie i zanieczyszczenia wynikające z nadmiernego zużycia energii prowadzą do wzrostu globalnego ocieplenia. Istnieje potrzeba poszukiwania zrównoważonych alternatyw, które zużywają mniej energii w celu zmniejszenia problemów środowiskowych, a także alternatyw dla stosowania freonu, który jest szkodliwy dla środowiska, jednym z najniebezpieczniejszych zanieczyszczeń i zwiększa dziurę ozonową. Obecne badania mają na celu zbadanie wydajności lodówek termoelektrycznych w różnych warunkach pracy. Przenośna lodówka termoelektryczna została opracowana dla osób mieszkających w odległych obszarach Egiptu poza siecią elektryczną (np. pustynie). Zaprojektowana lodówka opiera się na efekcie Peltiera z wykorzystaniem jednostek Peltiera. Lodówka została zaprojektowana, wyprodukowana i przetestowana eksperymentalnie. Zbadano kilka zmiennych w systemach szybkiego chłodzenia dla różnych warunków, aby zminimalizować czas, obniżyć temperaturę chłodzenia i zwiększyć współczynnik wydajności (COP) za pomocą metodologii powierzchni odpowiedzi (RSM). Wyniki pokazują, że uzyskany maksymalny współczynnik COP wynosił 77,3% przy 4 V i 1,006 przy różnicy w temperaturze chłodzenia (ΔT) wynoszącej 8°C. Najwyższa ΔT wynosiła 26,4°C przy 10 V, 9,149 A, 91,49 W i COP 11,2%. Optymalnym warunkiem była temperatura chłodzenia 12,7°C, COP 51,4% przy 4 V, 3,445 A przy użyciu 4 Peltierów, zgodnie z metodologią powierzchni odpowiedzi (RSM) obejmującą procedury optymalizacji ustawień zmiennych czynnikowych przez eksperta ds. projektowania 13, tak że maksymalna ΔT wynosiła 20,3°C i maksymalny COP 49,576% przy 4 V, 4 nr Peltiera i prądzie 3,601 A w zakresie wartości. Wyniki pokazują, że uzyskany współczynnik determinacji dla ΔT i COP skorygowane wartości R2 i R3 odpowiednio 0,9286 i 0,9603.
REFERENCES (27)
1.
Abdul-Wahab et al. 2009 – Abdul-Wahab, S.A., Elkamel, A., Al-Damkhi, A.M., Al-Habsi, I.A., Al-Rubai’ey’, H.S., Al-Battashi, A.K., Al-Tamimi, A.R., Al-Mamari, K.H. and Chutani, M.U. 2009. Design and Experimental Investigation of Portable Solar Thermoelectric Refrigerator. Renewable Energy 34(1), pp. 30–34, DOI: 10.1016/j.renene.2008.04.026.
 
2.
Afshari, F. 2021. Experimental and Numerical Investigation on Thermoelectric Coolers for Comparing Air-to-Water to Air-to-Air Refrigerators. Journal of Thermal Analysis and Calorimetry 144(3), pp. 855–868, DOI: 10.1007/s10973-020-09500-6.
 
3.
Astrain et al. 2016 – Astrain, D., Aranguren, P., Martínez, A., Rodríguez, A. and Pérez, M.G. 2016. A Comparative Study of Different Heat Exchange Systems in a Thermoelectric Refrigerator and Their Influence on the Efficiency. Applied Thermal Engineering 103, pp. 1289–1298, DOI: 10.1016/j.applthermaleng.2016.04.132.
 
4.
Biswas, O. and Kandasamy, P. 2021. Development and Experimental Investigation of Portable Solar-Powered Thermoelectric Cooler for Preservation of Perishable Foods. International Journal of Renewable Energy Research 11(3), pp. 1292–1293.
 
5.
Çağlar, A. 2018. Optimization of Operational Conditions for a Thermoelectric Refrigerator and Its Performance Analysis at Optimum Conditions. International Journal of Refrigeration 96, pp. 70–77, DOI: 10.1016/j.ijrefrig.2018.09.014.
 
6.
Chen et al 2012 – Chen, L., Meng, F. and Sun, F. 2012. Effect of Heat Transfer on the Performance of Thermoelectric Generator-Driven Thermoelectric Refrigerator System. Cryogenics 52(1), pp. 58–65, DOI: 10.1016/j.cryogenics.2011.10.007.
 
7.
Chen et al. 2022 – Chen, W.H., Carrera Uribe, M., Kwon, E.E., Lin, K.-Y.A., Park, Y.-K., Ding, L. and Saw, L.H. 2022. A Comprehensive Review of Thermoelectric Generation Optimization by Statistical Approach: Taguchi Method, Analysis of Variance (ANOVA), and Response Surface Methodology (RSM). Renewable and Sustainable Energy Reviews 169, DOI: 10.1016/j.rser.2022.112917.
 
8.
Elngar et al. 2018 – Elngar, A.E.M., Rehim, Z.S.A., Refai, W.M., El-Bayoumi, N. and Marzouk, A.L. 2018. Modeling and Power Control for Integrated System of Photovoltaic and Thermoelectric Element. Journal of Scientific and Engineering Research 5(12), pp. 202–210. [Online] https://jsaer.com/download/vol... [Accessed: 2023-10-16].
 
9.
Gökçek, M. and Şahin, F. 2017. Experimental Performance Investigation of Minichannel Water Cooled-Thermoelectric Refrigerator. Case Studies in Thermal Engineering 10, pp. 54–62, DOI: 10.1016/j.csite.2017.03.004.
 
10.
Góralczyk et al. 2016 – Góralczyk, S., Marchenko, W., Karnkowska, M. and Podgórzak, R. 2016. Technology of Electrical Energy Production from Renewable (Technologia produkcji energii elektrycznej z odnawialnych źródeł). Polityka Energetyczna – Energy Policy Journal 19(4), pp. 87–100 (in Polish).
 
11.
He et al. 2013 – He, W., Zhou, J., Hou, J., Chen, C. and Ji, J. 2013. Theoretical and Experimental Investigation on a Thermoelectric Cooling and Heating System Driven by Solar. Applied Energy 107, pp. 89–97, DOI: 10.1016/j.apenergy.2013.01.055.
 
12.
Huang et al. 2000 – Huang, B.J., Chin, C.J. and Duang, C.L. 2000. A Design Method of Thermoelectric Cooler. International Journal of Refrigeration 23(3), pp. 208–218, DOI: 10.1016/S0140-7007(99)00046-8.
 
13.
Ibrahim et al. 2020 – Ibrahim, S.M.A., Abed, K.A., Gad, M.S. and Abu Hashish, H.M. 2020. “Experimental Study on the Effect of Preheated Egyptian Jatropha Oil and Biodiesel on the Performance and Emissions of a Diesel Engine. International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS 20(1), pp. 59–69.
 
14.
Kolanowski, W 2021. Salmonids as Natural Functional Food Rich in Omega-3 PUFA. Applied Sciences 11(5), DOI: 10.3390/app11052409.
 
15.
Manikandan et al. 2017 – Manikandan, S., Kaushik, S.C. and Yang, R. 2017. Modified Pulse Operation of Thermoelectric Coolers for Building Cooling Applications. Energy Conversion and Management 140, pp. 145–156, DOI: 10.1016/j.enconman.2017.03.003.
 
16.
Mirmanto et al. 2019 – Mirmanto, M., Syahrul, S. and Wirdan, Y. 2019. Experimental Performances of a Thermoelectric Cooler Box with Thermoelectric Position Variations. Engineering Science and Technology, an International Journal 22(1), pp. 177–184, DOI: 10.1016/j.jestch.2018.09.006.
 
17.
Nechev et al. 2021 – Nechev, J.T., Edvinsen, G.K. and Eilertsen, K.E. 2021. Fatty Acid Composition of the Lipids from Atlantic Salmon – Comparison of Two Extraction Methods without Halogenated Solvents. Foods 10(1), DOI: 10.3390/foods10010073.
 
18.
Parlak et al. 2024 – Parlak, Z., İslamoğlu, Y. and Parlak, N. 2024. Performance Evaluation of an Integrated Heatsink and Thermoelectric Module by Two-Way Coupled Numerical Analysis. International Journal of Thermal Sciences 197, DOI: 10.1016/j.ijthermalsci.2023.108809.
 
19.
Rejeb et al. 2020 – Rejeb, O., Shittu, S., Ghenai, C., Li, G., Zhao, X. and Bettayeb, M. 2020. Optimization and Performance Analysis of a Solar Concentrated Photovoltaic-Thermoelectric (CPV-TE) Hybrid System. Renewable Energy 152, pp. 1342–1353, DOI: 10.1016/j.renene.2020.02.007.
 
20.
Riffat, S.B. and Ma, X. 2003. Thermoelectrics: A Review of Present and Potential Applications. Applied Thermal Engineering 23(8), pp. 913–935, DOI: 10.1016/S1359-4311(03)00012-7.
 
21.
Sajid et al. 2017 – Sajid, M., Hassan, I. and Rahman, A. 2017. An Overview of Cooling of Thermoelectric Devices. Renewable and Sustainable Energy Reviews 78, pp. 15–22, DOI: 10.1016/j.rser.2017.04.098.
 
22.
Seebeck, T.J. 1826. On the magnetic polarization of metals and ores by temperature difference (Ueber Die Magnetische Polarisation Der Metalle Und Erze Durch Temperatur-Differenz). Annalen der Physik 82(2), pp. 133–160, DOI: https://10.1002/andp.182608202... (in German).
 
23.
Soprani et al. 2016 – Soprani, S., Haertel, J.H.K., Lazarov, B.S., Sigmund, O. and Engelbrecht, K. 2016. A Design Approach for Integrating Thermoelectric Devices Using Topology Optimization. Applied Energy 176, pp. 49–64, DOI: 10.1016/j.apenergy.2016.05.024.
 
24.
Takahashi et al. 2013 – Takahashi, K., Kanno, T., Sakai, A., Tamaki, H., Kusada, H. and Yamada, Y. 2013. Bifunctional Thermoelectric Tube Made of Tilted Multilayer Material as an Alternative to Standard Heat Exchangers. Scientific Reports 3, DOI: 10.1038/srep01501.
 
25.
Tan, G. and Zhao, D. 2015. Study of a Thermoelectric Space Cooling System Integrated with Phase Change Material. Applied Thermal Engineering 86, pp. 187–198, DOI: 10.1016/j.applthermaleng.2015.04.054.
 
26.
Tipsaenporm et al. 2012 – Tipsaenporm, W., Lertsatitthanakorn, C. Bubphachot, B., Rungsiyopas, M. and Soponronnarit, S. 2012. Improvement of Cooling Performance of a Compact Thermoelectric Air Conditioner Using a Direct Evaporative Cooling System. Journal of Electronic Materials 41(6), pp. 1186–1192, DOI: 10.1007/s11664-012-1909-9.
 
27.
Tripathi et al. 2020 – Tripathi, M., Bhatnagar, A., Mubarak, N.M., Sahu, J.N. and Ganesan, P. 2020. RSM Optimization of Microwave Pyrolysis Parameters to Produce OPS Char with High Yield and Large BET Surface Area. Fuel 277, DOI: 10.1016/j.fuel.2020.118184.
 
eISSN:2720-569X
ISSN:1429-6675
Journals System - logo
Scroll to top