ORIGINAL PAPER
The design of a model for a 1 MW parabolic trough concentrated solar power plant in Sudan using TRNSYS software
 
More details
Hide details
1
Mechanical engineering, Sapienza Università di Roma, Italy
 
2
Mechanical engineering, University of Khartoum, Sudan
 
 
Submission date: 2021-10-21
 
 
Final revision date: 2022-09-06
 
 
Acceptance date: 2022-09-06
 
 
Publication date: 2022-09-29
 
 
Corresponding author
Abdelkareem Abdallah Abdelkareem Jebreel   

Mechanical engineering, Sapienza Università di Roma, Via Eudossiana, 18,, 00184, ROME, Italy
 
 
Polityka Energetyczna – Energy Policy Journal 2022;25(3):67-90
 
KEYWORDS
TOPICS
ABSTRACT
Solar photovoltaic (PV) and concentrated solar power (CSP) systems are the present worldwide trends in utilizing solar energy for electricity generation. Solar energy produced from photovoltaic cells (PV) is considered the main common technology used due to its low capital cost; however, the relatively low efficiency of PV cells has spotlighted development and research on thermal engine applications using concentrated solar power. The efficiency of concentrated solar power is greater than that of PV and considering the solar potential for Sudan. Therefore, this study has been performed in an attempt to draw attention to the utilization of CSP in Sudan since the share of CSP is insignificant in comparison with PV, besides the suitability of CSP applications to Sudan’s hot climate and the high solar energy resource, the study presents a design model of 1 MW parabolic trough collectors (PTC) using the Rankine cycle with thermal energy storage (TES) in Sudan, by adopting reference values of the Gurgaon PTC power plant in India. The design of a 1 MW Concentrated Solar thermal power plant using parabolic trough collectors (PTC) and thermal energy storage is proposed. The simulation was performed for a site receiving an annual direct normal irradiance (DNI) of 1915 kWh/m2, near Khartoum. The results showed that the plant can produce between nearly 0.6 to 1 MWh during the year, and around 0.9 MWh when it encompasses thermal energy storage with an average thermal efficiency of 24%. These results of the PTC Power plant encourage further investigation and the development of CSP technologies for electricity generation in Sudan.
METADATA IN OTHER LANGUAGES:
Polish
Projekt modelu skoncentrowanej elektrowni słonecznej z rynną paraboliczną o mocy 1 MW w Sudanie z wykorzystaniem oprogramowania TRNSYS
magazynowanie ciepła, termiczne kolektory słoneczne, fotowoltaiczny panel słoneczny, odnawialne źródło energii, elektrownie słoneczne
Systemy fotowoltaiczne (PV) i skoncentrowanej energii słonecznej (CSP) to obecne światowe trendy w wykorzystywaniu energii słonecznej do wytwarzania energii elektrycznej. Energia słoneczna wytwarzana z ogniw fotowoltaicznych (PV) jest uważana za główną powszechnie stosowaną technologię ze względu na jej niski koszt kapitałowy, jednak stosunkowo niska wydajność ogniw fotowoltaicznych zwróciła uwagę na rozwój i badania nad zastosowaniami silników cieplnych wykorzystujących skoncentrowaną energię słoneczną. W warunkach posiadanego potencjału słonecznego Sudanu wydajność skoncentrowanej energii słonecznej jest większa niż PV. Dlatego niniejsze badanie zostało przeprowadzone w celu zwrócenia uwagi na wykorzystanie CSP w Sudanie, ponieważ udział CSP jest nieznaczny w porównaniu z PV, pomimo przydatności zastosowań CSP do gorącego klimatu Sudanu i wysokich zasobów energii słonecznej. W pracy przedstawiono projekt modelu parabolicznych kolektorów rynnowych (PTC) o mocy 1 MW z wykorzystaniem cyklu Rankine’a z magazynowaniem energii cieplnej (TES) w Sudanie, przyjmując wartości referencyjne elektrowni Gurgaon PTC w Indiach. Zaproponowano projekt elektrowni słonecznej o mocy 1 MW wykorzystującej paraboliczne kolektory rynnowe (PTC) i magazynowanie energii cieplnej. Symulacja została przeprowadzona dla miejsca zlokalizowanego koło Chartumu, o rocznym bezpośrednim napromieniowaniu normalnym (DNI) 1915 kWh/m2. Wyniki pokazały, że elektrownia może wyprodukować od prawie 0,6 do 1 MWh w ciągu roku i około 0,9 MWh, przy wykorzystaniu magazynowanie energii cieplnej ze średnią sprawnością cieplną 24%. Te wyniki elektrowni PTC zachęcają do dalszych badań i rozwoju technologii CSP do wytwarzania energii elektrycznej w Sudanie.
 
REFERENCES (34)
1.
Abdel-Dayem et al. 2013 – Abdel-Dayem, A.M., Nabil Metwally, M., Alghamdi, A.S. and Marzouk, E.M. 2013. Potential of solar thermal energy utilization in electrical generation. 2nd International Conference on Energy Systems and Technologies, Cairo, Egypt.
 
2.
Achour et al. 2018 – Achour, L., Bouharkat, M. and Behar, O. 2018. Performance assessment of an integrated solar combined cycle in the southern of Algeria. Energy Reports 4, pp. 207–217, DOI: 10.1016/j.egyr.2017.09.003.
 
3.
“Andasol-1” SolarPACES. National Renewable Energy Laboratory. [Online] http://www.nrel.gov/csp/solarp... [Accessed: 2022-02-10].
 
4.
Bakos, G.C. 2006. Design and construction of a two-axis Sun tracking system for parabolic trough collector (PTC) efficiency improvement. Renewable Energy 31(15), pp. 2411–2421, DOI: 10.1016/j.renene.2005.11.008.
 
5.
Bakos et al. 2001 – Bakos, G.C., Ioannidis, I., Tsagas, N.F. and Seftelis, I. 2001. Design, optimisation and conversion-efficiency determination of a line-focus parabolic-trough solar-collector (PTC). Applied Energy 68(1), pp. 43–50, DOI: 10.1016/S0306-2619(00)00034-9.
 
6.
Bhutka et al. 2016 – Bhutka, J., Gajjar, J. and Tirumalachetty, H. 2016. Modelling of Solar Thermal Power Plant Using Parabolic Trough Collector. Journal of Power and Energy Engineering 4, pp. 9–25, DOI: 10.4236/jpee.2016.48002.
 
7.
Cader et al. 2021 – Cader, J., Olczak, P. and Koneczna, R. 2021. Regional dependencies of interest in the “My Electricity” photovoltaic subsidy program in Poland. Polityka Energetyczna – Energy Policy Journal 24(2), pp. 97–116, DOI: 10.33223/epj/133473.
 
8.
Dudley et al. 1994 – Dudley, V.E., Kolb, G. J., Mahoney, A.R., Mancini, T.R., Matthews, C.W., Sloan, M. and Kearney, D. 1994. Test results: SEGS LS-2 solar collector. Albuquerque, NM (United States): Sandia National Laboratories (SNL-NM).
 
9.
GarcÍa et al. 2011 – GarcÍa, I.L., Álvarez., J.L. and Blanco, D. 2011. Performance model for parabolic trough solar thermal power plants with thermal storage: Comparison to operating plant data. Solar Energy 85(10), pp. 2443–2460, DOI: 10.1016/j.solener.2011.07.002.
 
10.
International Renewable Energy Agency (IRENA) 2020. Renewable Power Generation Cost.
 
11.
International Renewable Energy Agency (IRENA) 2021. Renewable Power Generation Cost.
 
12.
Jones et al. 2001 – Jones, S., Robert, P.-P., Schwarzbözl, P. and Blair, N. 2001. TRNSYS Modeling of the SEGS VI Parabolic Trough Solar Electric Generating System. Conference: Solar Forum 2001, Solar Energy: The Power to Choose. April 21–25, Washington, DOI: 10.1115/SED2001-152.
 
13.
Kays, W.M. and London, A.L. 1958. Compact heat exchangers. McGraw-Hill.
 
14.
Koohi-Fayegh, S. and Rosen, M.A. 2020. A review of energy storage types, applications and recent developments. Journal of Energy Storage 27, DOI: 10.1016/j.est.2019.101047.
 
15.
Krawczyk et al. 2020 – Krawczyk, P., Śliwińska, A. and Ćwięczek, M. 2020. Evaluation of the economic efficiency of storage technology for electricity from coal power plants in large-scale chemical batteries. Polityka Energetyczna – Energy Policy Journal 23(2), pp. 67–90, DOI: 10.33223/epj/120033.
 
16.
Lippke, F. 1994. Simulation of the part-load Behaviour of a 30 MWe SEGS plant. Albuquerque, NM (United States): Sandia National Laboratories (SNL-NM).
 
17.
Lobón et al. 2014 – Lobón, D.H., Baglietto, E., Valenzuela, L. and Zarza, E. 2014. Modeling direct steam generation in solar collectors with multiphase CFD. Applied Energy 113(C), pp. 1338–1348, DOI: 10.1016/j.apenergy.2013.08.046.
 
18.
Mikhno et al. 2021 – Mikhno, I., Koval, V., Shvets, G., Garmatiuk, O. and Tamošiūnienė, R. 2021. Green Economy in Sustainable Development and Improvement of Resource Efficiency. Central European Business Review 10(1), pp. 99–113, DOI: 10.18267/j.cebr.252.
 
19.
Morimoto, M. and Maruyama T. 2005. Static solar concentrator with vertical flat plate photovoltaic cells and switchable white/transparent bottom plate. Solar Energy Materials and Solar Cells 87(1–4), pp. 299–309, DOI: 10.1016/j.solmat.2004.08.013.
 
20.
Naeeni, N. and Yaghoubi, M. 2007. Analysis of wind flow around a parabolic collector (1) fluid flow. Renewable Energy 32(11), pp. 1898–1916, DOI: 10.1016/j.renene.2006.10.004.
 
21.
“National Solar Thermal Power Facility” SolarPACES. National Renewable Energy Laboratory. [Online] https://solarpaces.nrel.gov/pr... [Accessed: 2022-02-10].
 
22.
Nixon et al. 2010 – Nixon, J., Dey., P. and Davies, P. 2010. Which is the best solar thermal collection technology for electricity generation in north-west India? Evaluation of options using the analytical hierarchy process. Energy 35(12), pp. 5230–5240, DOI: 10.1016/j.energy.2010.07.042.
 
23.
Price, H. and Kearney, D. 2003. Reducing the cost of energy from Parabolic Trough Solar Power Plants. ISES 2003: International Solar Energy Conference. Hawaii Island: National Renewable Energy Laboratory.
 
24.
Rabah et al. 2016 – Rabah, A., Nimer, H., Doud, K. and Ahmed, Q. 2016. Modelling of Sudan’s Energy Supply, Transformation, and Demand. Journal of Energy 1–14, DOI: 10.1155/2016/5082678.
 
25.
Rabl, A. 1976. Comparison of solar concentrators. Solar Energy 18(2), pp. 93–111, DOI: 10.1016/0038-092X(76)90043-8.
 
26.
Remlaoui et al. 2019 – Remlaoui, A., Benyoucef, M., Assi, D. and Nehari, D. 2019. A TRNSYS dynamic simulation model for a parabolic trough solar thermal power plant. International Journal of Energetica (IJECA) 4(2), pp. 36–41, DOI: 10.47238/ijeca.v4i2.106.
 
27.
Santos, J.J.C.S. and Barone, M.A. 2018. Concentrating Solar Power. [In:] I. Yahyaoui (Ed.), Advances in Renewable Energies and Power Technologies 1. Elsevier.
 
28.
Schwarzboezl, P. 2006. A TRNSYS Model Library for Solar Thermal Electric Components (STEC). Reference Manual, Release 3.0. November 2006.
 
29.
Sribna et al. 2021 – Sribna, Y., Koval, V., Olczak, P., Bizonych, D., Matuszewska, D. and Shtyrov, O. 2021. Forecasting solar generation in energy systems to accelerate the implementation of sustainable economic development. Polityka Energetyczna – Energy Policy Journal 24(3), pp. 5–28, DOI: 10.33223/epj/141095.
 
30.
The World Bank, Source: Global Solar Atlas 2.0, Solar resource data: Solargis 2020. [Online] https://solargis.com/maps-and-... [Accessed: 2022-02-10].
 
31.
The World Bank, World Bank Global Electrification Database from “Tracking SDG 7: The Energy Progress Report”. [Online] https://data.worldbank.org/ind... [Accessed: 2022-02-10].
 
32.
TMY2, The University of Wisconsin-Madison, Solar Energy laboratory. [Online] https://sel.me.wisc.edu/trnsys... [Accessed: 2022-02-10].
 
33.
Tora, E.A.M. and El‐Halwagi, M.M. 2009. Optimal design and integration of solar systems and fossil fuels for sustainable and stable power outlet. Clean Technologies and Environmental Policy 11, pp. 401–407, DOI: 10.1007/s10098-009-0198-3.
 
34.
Zaaraouia et al. 2012 – Zaaraouia, A., Yousfib, M.L. and Saidc, N. 2012. Technical and economical Performance of Parabolic Trough Collector Power Plant under Algerian Climate. Procedia Engineering 33, pp. 78–91, DOI: 10.1016/j.proeng.2012.01.1179.
 
eISSN:2720-569X
ISSN:1429-6675
Journals System - logo
Scroll to top