ORIGINAL PAPER
Shaping cost-optimal and environmentally friendly strategies for household heating systems: case of Ukraine
 
More details
Hide details
1
University of Geneva, Switzerland
 
2
Sumy State University, Ukraine
 
3
Economics and International Economic Relations Department, Estonian Entrepreneurship University of Applied Sciences, Estonia
 
4
Sumy State Pedagogical University named after A. S. Makarenko, Ukraine
 
 
Submission date: 2024-06-05
 
 
Final revision date: 2024-07-23
 
 
Acceptance date: 2024-07-30
 
 
Publication date: 2024-09-24
 
 
Corresponding author
Iryna Sotnyk   

Sumy State University, Ukraine, University of Geneva, Switzerland
 
 
Polityka Energetyczna – Energy Policy Journal 2024;27(3):161-192
 
KEYWORDS
TOPICS
ABSTRACT
The heating processes of private residential buildings demand substantial fuel and energy resources and contribute to global warming, necessitating the transition to energy-efficient and eco--friendly heating. This study aims to develop a methodological approach for selecting cost-optimal strategies for household heating systems by assessing the environmental impacts and cost-effectiveness of available options of fossil fuels and renewable energy used in the residential sector during a heating season while ensuring homes’ greening and energy efficiency. The research extends the existing methodology by considering climatic zones and their ambient air temperature fluctuations during a heating season, household energy efficiency, various energy carriers used for heating, household running and capital costs for heating, multi-zone electricity tariffs, and prospects of heating automation, aiding policymakers in shaping residential heating choices. Tested on a typical Ukrainian household, the approach contributes to sectoral policy improvement by creating energy-efficient and decarbonization strategies for housing stock, with potential application in other countries. The results show that the most cost-optimal options for heating in Ukraine are firewood and natural gas use under the current energy policy. Based on the findings, the study suggests recommendations within Ukraine’s regional context and carbon neutrality goals. They provide a transition to renewables (wood pellets and heat pumps) by developing a market infrastructure for servicing boiler equipment and logistics for biofuel supply, state economic support to local boiler equipment manufacturers, and partial reimbursement of investments in pellet boilers and heat pumps for households, electricity tariff adjustments, etc.
METADATA IN OTHER LANGUAGES:
Polish
Kształtowanie optymalnych kosztowo i przyjaznych środowisku strategii systemów grzewczych gospodarstw domowych: przypadek Ukrainy
gospodarstwo domowe, ogrzewanie, strategia optymalna kosztowo, dekarbonizacja, efektywność energetyczna, energia odnawialna, Ukraina
Procesy ogrzewania prywatnych budynków mieszkalnych wymagają znacznych zasobów paliw i energii oraz przyczyniają się do globalnego ocieplenia, co wymaga przejścia na energooszczędne i przyjazne dla środowiska ogrzewanie. Niniejsza analiza ma na celu opracowanie metodologicznego podejścia do wyboru optymalnych kosztowo strategii dla domowych systemów grzewczych poprzez ocenę wpływu na środowisko i opłacalności dostępnych opcji paliw kopalnych i energii odnawialnej wykorzystywanych w sektorze mieszkaniowym w sezonie grzewczym, przy jednoczesnym zapewnieniu ekologiczności i efektywności energetycznej domów. Badanie rozszerza istniejącą metodologię, biorąc pod uwagę strefy klimatyczne i ich wahania temperatury powietrza w sezonie grzewczym, efektywność energetyczną gospodarstw domowych, różne nośniki energii wykorzystywane do ogrzewania, koszty bieżące i kapitałowe ogrzewania gospodarstw domowych, wielostrefowe taryfy energii elektrycznej oraz perspektywy automatyzacji ogrzewania, pomagając decydentom w kształtowaniu wyborów dotyczących ogrzewania mieszkań. Podejście to, przetestowane na typowym ukraińskim gospodarstwie domowym, przyczynia się do poprawy polityki sektorowej poprzez tworzenie energooszczędnych i dekarbonizacyjnych strategii dla zasobów mieszkaniowych, z potencjalnym zastosowaniem w innych krajach. Wyniki pokazują, że najbardziej optymalnymi pod względem kosztów opcjami ogrzewania w Ukrainie są drewno opałowe i wykorzystanie gazu ziemnego w ramach obecnej polityki energetycznej. W oparciu o wyniki badania zaproponowano zalecenia w kontekście regionalnym Ukrainy i celów neutralności węglowej. Zapewniają one przejście na odnawialne źródła energii (pelety drzewne i pompy ciepła) poprzez rozwój infrastruktury rynkowej do serwisowania urządzeń kotłowych i logistyki dostaw biopaliw, wsparcie ekonomiczne państwa dla lokalnych producentów urządzeń kotłowych oraz częściowy zwrot inwestycji w kotły na pelety i pompy ciepła dla gospodarstw domowych, dostosowanie taryf energii elektrycznej itp.
 
REFERENCES (71)
1.
Arsawan et al. 2021 – Arsawan, I. W. E., Koval, V., Duginets, G., Kalinin, O. and Korostova, I. 2021. The impact of green innovation on environmental performance of SMEs in an emerging economy. E3S Web of Conferences: International Conference on Sustainable, Circular Management and Environmental Engineering (ISCMEE 2021) 255, DOI: 10.1051/e3sconf/202125501012.
 
2.
Babenko, M. 2024. Tariffs 2024 – how much Ukrainians will have to pay for electricity, gas, water, heat. [Online] https://thepage.ua/ua/economy/... 2024 [Accessed: 2024-05-10].
 
3.
Baborska-Narożny et al. 2020 – Baborska-Narożny, M., Szulgowska-Zgrzywa, M., Chmielewska, A., Stefanowicz, E., Fidorów-Kaprawy, N., Piechurski, K. and Laska, M. 2020. Understanding residential fuel combustion challenge – real world study in Wroclaw, Poland. Smart Innovation, Systems and Technologies 163, pp. 747–757, DOI: 10.1007/978-981-32-9868-2_63.
 
4.
Bashynska et al. 2022 – Bashynska, I., Smokvina, G., Yaremko, L., Lemko, Y., Ovcharenko, T. and Zhang, S. 2022. Assessment of investment and innovation image of the regions of Ukraine in terms of sustainable transformations. Acta Innovations 43, pp. 63–77, DOI: 10.32933/ActaInnovations.43.6.
 
5.
Baza-drov 2024. Price-lists. [Online] https://baza-drov.com.ua/prajs... [Accessed: 2024-03-21].
 
6.
Becker et al. 2018 – Becker, V., Kleiminger, W., Coroamă, V.C. and Mattern, F. 2018. Estimating the savings potential of occupancy-based heating strategies. Energy Informatics 1, pp. 35–54, DOI: 10.1186/s42162-018-0022-6.
 
7.
Bilan et al. 2020 – Bilan, Y., Srovnalã-KovÃi, P., Streimikis, J., Lyeonov, S., Tiutiunyk, I. and Humenna, Y. 2020. From shadow economy to lower carbon intensity: Theory and evidence. International Journal of Global Environmental Issues 19 (1–3), pp. 196–216, DOI: 10.1504/IJGENVI.2020.10037582.
 
8.
Chygryn et al. 2023 – Chygryn, O., Bektas, C. and Havrylenko, O. 2023. Innovation and management of smart transformation global energy sector: systematic literature review. Business Ethics and Leadership 7(1), pp. 105–112, DOI: 10.21272/bel.7(1).105-112.2023.
 
9.
Chygryn, O. and Shevchenko, K. 2023. Energy industry development: key trends and the core determinants. SocioEconomic Challenges 7(1), pp. 115–128, DOI: 10.21272/sec.7(1).115-128.2023.
 
10.
Comparative characteristics of some types of fuel 2016. [Online] https://bioopt.com.ua/ua/a2403... [Accessed: 2024-04-15].
 
11.
De Mel et al. 2023 – De Mel, I., Bierkens, F., Liu, X., Leach, M., Chitnis, M., Liu, L. and Short, M. 2023. A decision-support framework for residential heating decarbonisation policymaking. Energy 268, DOI: 10.1016/j.energy.2023.126651.
 
12.
Dong et al. 2023 – Dong, Z., Zhang, X., Li, Y. and Strbac, G. 2023. Values of coordinated residential space heating in demand response provision. Applied Energy 330, DOI: 10.1016/j.apenergy.2022.120353.
 
13.
Drova-Kiev 2023. How much does a cube of firewood weigh: the weight of a cube of pine, oak. [Online] https://drova-kiev.in.ua/ua/bl... [Accessed: 2024-03-18].
 
14.
DSTU-N B V.1.1-27:2010 (ДСТУ-Н Б В.1.1-27:2010). Protection against the dangerous geological processes, harmful operational influences, against the fire. Building Climatology. Kyiv, Minregionbud, 2011. [Online] https://drive.google.com/file/... [Accessed: 2024-03-15] (in Ukrainian).
 
15.
Efficiency Nova Scotia 2024. Home heating cost comparison. [Online] https://www.efficiencyns.ca/to... [Accessed: 2024-07-20].
 
16.
Efficiency Maine 2024. Compare home. [Online] https://www.efficiencymaine.co... [Accessed: 2024-07-20].
 
17.
Energosberezhenie.com 2024. Calculation of heating costs. [Online] https://www.energosberezhenie.... [Accessed: 2024-04-20].
 
18.
Esmat et al. 2023 – Esmat, A., Ghiassi-Farrokhfal, Y., Gunkel, P.A. and Bergaentzlé, C.-M. 2023. A decision support system for green and economical individual heating resource planning Applied Energy 347, DOI: 10.1016/j.apenergy.2023.121442.
 
19.
Gao et al. 2018 – Guan, H.H., Li, Q.B., Yin H., Xia S.W., Zhang D.Y., Gao X., Wang W., Zhang, S.F. and Wang, L.Y. 2018. Cooperative optimal operation strategy of household electric heating. Proceedings of the 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China 1–5, DOI: 10.1109/EI2.2018.8582420.
 
20.
Grieze, E. and Miķelsone, E. 2021. Biomimicry element application in the interior design product development. Economics Ecology Socium 5, pp. 59–70, DOI: 10.31520/2616-7107/2021.5.2-7.
 
21.
Grundfos 2024. COP (Coefficient of Performance). [Online] https://www.grundfos.com/solut... [Accessed: 2024-03-12].
 
22.
Heat pumps – performance and efficiency ratings. [Online] https://www.engineeringtoolbox... [Accessed: 2024-03-18].
 
23.
KlimatSpetsService 2024. Heat pump Panasonic High Performance WH-UD12HE8/WH-SDC12H9E8 (BI-BLOC, 12 kW, 380 V). [Online] https://klimat-s.com.ua/vozduh... [Accessed: 2024-03-30].
 
24.
Koval et al. 2019 – Koval, V., Sribna, Y., Mykolenko, O. and Vdovenko, N. 2019. Environmental concept of energy security solutions of local communities based on energy logistics. Proceedings of the 19th International Multidisciplinary Scientific GeoConference SGEM 2019 19(5.3), pp. 283–290, DOI: doi.org/10.5593/sgem2019/5.3/S21.036.
 
25.
Kurbatova et al. 2021 – Kurbatova, T., Sotnyk, I., Prokopenko, O., Sidortsov, R. and Tu, Y.-X. 2021. Balancing Ukraine’s energy system: challenges under high renewable energy penetration and the COVID-19 pandemic. E3S Web of Conferences 280, DOI: 10.1051/e3sconf/202128005007.
 
26.
Kurbatova et al. 2023a – Kurbatova T., Sotnyk I., Trypolska G., Gerlitz L., Skibina T., Prokopenko O. and Kubatko O. 2023a. Ukraine’s bioenergy sector: trends and perspectives for the post-war green energy transition. International Journal of Energy Economics and Policy 13(5), pp. 1–18, DOI: 10.32479/ijeep.14633.
 
27.
Kurbatova et al. 2023b – Kurbatova, T., Sotnyk, I., Prokopenko, O., Bashynska, I. and Pysmenna, U. 2023b. Improving the feed-in tariff policy for renewable energy promotion in Ukraine’s households. Energies 16(19), DOI: 10.3390/en16196773.
 
28.
Kurbatova et al. 2024 – Kurbatova, T., Sidortsov, R., Trypolska, G., Hulak, D. and Sotnyk, I. 2024. Maintaining Ukraine’s grid reliability under rapid growth of renewable electricity share: challenges in the pre-war, war-time, and post-war periods. International Journal of Sustainable Energy Planning and Management 40, pp. 39–51, DOI: 10.54337/ijsepm.8112.
 
29.
Kuzmynchuk et al. 2024 – Kuzmynchuk, N., Kutsenko, T., Aloshyn, S. and Terovanesova, O. 2024. Energy marketing and fiscal regulation of a competitive energy efficiency system. Economics Ecology Socium 8(1), pp. 112–121, DOI: 10.61954/2616-7107/2024.8.1-9.
 
30.
Letunovska et al. 2021 – Letunovska, N., Saher, L., Vasylieva, T. and Lieonov, S. 2021. Dependence of public health on energy consumption: a cross-regional analysis. E3S Web of Conferences: 1st Conference on Traditional and Renewable Energy Sources: Perspectives and Paradigms for the 21st Century (TRESP 2021) 250, DOI: 10.1051/e3sconf/202125004014.
 
31.
Li et al. 2022 – Li, R., Xin, Y., Sotnyk, I., Kubatko, O., Almashaqbeh, I., Fedyna, S. and Prokopenko, O. 2022. Energy poverty and energy efficiency in emerging economies. International Journal of Environment and Pollution (IJEP) 69, pp. 1/2, DOI: 10.1504/IJEP.2021.125188.
 
32.
Luboń et al. 2024 – Luboń, W., Pełka, G. and Fiut, N. 2020. Cost Comparison of heating a detached house by means of a heat pump and solid-fuel boiler. [In:] Wróbel, M., Jewiarz, M., Szlęk, A. (eds). Renewable Energy Sources: Engineering, Technology, Innovation. Springer Proceedings in Energy. Springer, Cham, DOI: 10.1007/978-3-030-13888-2_50.
 
33.
Marino et al. 2021 – Marino, C., Nucara, A., Panzera, M.F., Piccolo, A. and Pietrafesa, M. 2021. Economical comparison among technical solutions for thermal energy production in buildings based on both conventional and solar RES systems. [In:] Bevilacqua, C., Calabrò, F., Della Spina, L. (eds). New Metropolitan Perspectives. NMP 2020. Smart Innovation, Systems and Technologies 178. Springer, Cham, DOI: 10.1007/978-3-030-48279-4_134.
 
34.
Matvieieva et al. 2023 – Matvieieva, Yu., Sulym, V., Rosokhata, A. and Jasnikowski, A. 2023. Influence of waste incineration and obtaining energy from it to the public health for certain territories: a bibliometric and substantive study. Health Economics and Management Review 4(1), pp. 71–80, DOI: 10.21272/hem.2023.1-07.
 
35.
Mazhar et al. 2022 – Mazhar, A.R., Zou, Y., Zeng, C., Shen, Y., Liu, S., Shen, Y. and Liu, S. 2022. An algorithm to assess the heating strategy of buildings in cold climates: a case study of Germany. International Journal of Low-Carbon Technologies 17, pp. 662–677, DOI: 10.1093/ijlct/ctac023.
 
36.
Meng et al. 2023 – Meng, W., Kiesewetter, G., Zhang, S., Schöpp, W., Rafaj, P., Klimont, Z. and Tao, S. 2023. Costs and benefits of household fuel policies and alternative strategies in the Jing-Jin-Ji region. Environmental Science and Technology 57(51), pp. 21662–21672, DOI: 10.1021/acs.est.3c01622.
 
37.
Mentel et al. 2018 – Mentel, G., Vasilyeva, T., Samusevych, Y. and Pryymenko, S. 2018. Regional differentiation of electricity prices: social-equitable approach. International Journal of Environmental Technology and Management 21(5–6), pp. 354–372, DOI: 10.1504/IJETM.2018.100583.
 
38.
Minfin 2024a. Electricity tariffs in 2024. [Online] https://index.minfin.com.ua/ua... [Accessed: 2024-05-20].
 
39.
Minfin 2024b. Gas tariffs for the population. [Online] https://index.minfin.com.ua/ua... [Accessed: 2024-04-20].
 
40.
Nekrasenko et al. 2015 – Nekrasenko, L.A., Prokopenko, O.V. and Aranchiy, V.I. 2015. Carbon tax as an instrument of environmental management in Ukraine. Actual Problems of Economics 165(3), pp. 196–202.
 
41.
NERCU 2024. Calculator for determining the cost of the standard connection of the customer’s electrical installations to the electrical networks of distribution system operators. [Online] https://www.nerc.gov.ua/calcul... [Accessed: 2024-03-30].
 
42.
Nordpeis 2024. How to calculate the heating needs of your home? [Online] https://www.nordpeis.com/en/al... [Accessed: 2024-07-20].
 
43.
OVK Complect 2024. Pellet boiler Termomont TOBY 12V 12 kW. [Online] https://ovk.ua/ua/shop/product... [Accessed: 2024-03-30].
 
44.
Pimonenko et al. 2017 – Pimonenko, T., Lyulyova, L. and Us, Y. 2017. Energy-efficient house: economic, ecological and social justification in Ukrainian conditions. Environmental Economics 8(4), pp. 53–61, DOI: 10.21511/ee.08(4).2017.07.
 
45.
Prokopenko et al. 2021 – Prokopenko, O., Chechel, A., Sotnyk, I., Omelyanenko, V., Kurbatova, T. and Nych, T. 2021. Improving state support schemes for the sustainable development of renewable energy in Ukraine. Polityka Energetyczna – Energy Policy Journal 24(1), pp. 85–100, DOI: 10.33223/epj/134144.
 
46.
Prokopenko et al. 2023 – Prokopenko, O., Prokopenko, M., Chechel, A., Marhasova, V., Omelyanenko, V. and Orozonova, A. 2023. Ecological and economic assessment of the possibilities of public-private partnerships at the national and local levels to reduce greenhouse gas emissions. Economic Affairs 68(01s), pp. 133–142, DOI: 10.46852/0424-2513.1s.2023.16.
 
47.
Pysar et al. 2018 – Pysar, N., Chornii, V., Bandura, A. and Khlobystov, Y. 2018. Methods for estimating “fuel poverty” in public administration and management systems. Problems and Perspectives in Management 16(2), pp. 341–352, DOI: 10.21511/ppm.16(2).2018.31.
 
48.
SAEE 2024. State support for energy saving – the “warm credits” program. [Online] https://saee.gov.ua/uk/consume... [Accessed: 2024-04-20].
 
49.
Sala et al. 2023 – Sala, D., Bashynska, I., Pavlova, O., Pavlov, K., Chorna, N. and Romanyuk, R. 2023. Investment and innovation activity of renewable energy sources in the electric power industry in the South-Eastern region of Ukraine. Energies 16(5), doi.org/10.3390/en16052363.
 
50.
Shmygol et al. 2021 – Shmygol, N., Galtsova, O., Shaposhnykov, K. and Bazarbayeva, S. 2021. Environmental management policy: an assessment of ecological and energy indicators and effective regional management (on the example of Ukraine). Polityka Energetyczna – Energy Policy Journal 24(4), pp. 43–60, DOI: 10.33223/epj/143836.
 
51.
Sotnyk et al. 2021 – Sotnyk, I., Kurbatova, T., Kubatko, O., Prokopenko, O., Prause, G., Kovalenko, Y., Trypolska, G. and Pysmenna, U. 2021. Energy security assessment of emerging economies under global and local challenges. Energies 14(18), DOI: 10.3390/en14185860.
 
52.
Sotnyk et al. 2023 – Sotnyk, I., Kurbatova, T., Kubatko, O., Prokopenko, O. and Järvis, M. 2023. Managing energy efficiency and renewable energy in the residential sector: A bibliometric study. Problems and Perspectives in Management 21(3), pp. 511–527, DOI: 10.21511/ppm.21(3).2023.41.
 
53.
State Statistics Service of Ukraine 2021. Social and demographic characteristics of households of Ukraine (according to sample survey results). [Online] https://ukrstat.gov.ua/druk/pu... [Accessed: 2023-12-02].
 
54.
Sumiteploenergo 2021. Temperature schedule of heat networks of Sumy CHP LLC “Sumiteploenergo” 110-70° for heat consumption facilities for the heating season 2020–2021 (Temperaturnyy hrafik teplovykh merezh Sumsʹkoyi TETS TOV «Sumyteploenerho» 110–70° dlya obʺyektiv teplospozhyvannya na opalyuvalʹnyy sezon 2020–2021). [Online] https://teplo.sumy.ua/wp-conte... [Accessed: 2024-03-15] (in Ukrainian).
 
55.
Teplomontag 2024. Solid fuel boiler Energy 15 kW. [Online] https://teplomontag.com.ua/ua/... [Accessed: 2024-03-30].
 
56.
Teploradist 2024a. Double-circuit gas boiler Viessmann Vitopend 100-W 12/24 kW without pipe. [Online] https://teploradost.com.ua/ua/... [Accessed: 2024-03-30].
 
57.
Teploradist 2024b. Electric boiler Protherm Ray (Scat) 12KE/14 (6 + 6 kW) with eBus bus. [Online] https://teploradost.com.ua/ua/... [Accessed: 2024-03-30].
 
58.
Teploradist 2024c. Solid fuel boiler on Kraft E 24 wood with automatic control. [Online] https://teploradost.com.ua/ua/... [Accessed: 2024-03-30].
 
59.
The calorific value of fuel briquettes and some types of fuel – 05.03.2017. [Online] https://bioekoprom.com.ua/ua/n... [Accessed: 2024-03-12].
 
60.
The National Bank of Ukraine 2024. The official exchange rate of the hryvnia against foreign currencies. [Online] https://bank.gov.ua/ua/markets... [Accessed: 2024-05-20].
 
61.
Trachenko et al. 2021 – Trachenko, L., Lazorenko, L., Maslennikov, Ye., Hrinchenko, Yu., Arsawan, I.W.E. and Koval, V. 2021. Optimization modeling of business processes of engineering service enterprises in the national economy. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 4, pp. 165–171, DOI: 10.33271/nvngu/2021-4/165.
 
62.
Trypolska, G. 2023. Dedicated energy crops: support policies in Europe and in post-war Ukraine. International Journal of Foresight and Innovation Policy 16(2–4), pp. 185–202, DOI: 10.1504/IJFIP.2023.136740.
 
63.
Ukrainian energy 2022. Contractual capacity: consumers have the right to 5 kW. [Online] https://ua-energy.org/uk/posts... [Accessed: 2024-03-30].
 
64.
United Nations 2015. Transforming Our World: the 2030 Agenda for Sustainable Development, A/RES/70/1. [Online] https://sustainabledevelopment... [Accessed 2024-03-01].
 
65.
Vakulenko et al. 2023 – Vakulenko, I., Saher, L. and Shymoshenko, A. 2023. Systematic literature review of сarbon-neutral economy concept. SocioEconomic Challenges 7(1), pp. 139–148, DOI: 10.21272/sec.7(1).139-148.2023.
 
66.
Wang et al. 2023 – Wang, Z., Li, H., Zhang, B., Wang, B., Li, H., Tian, X., Lin, J. and Feng, W. 2023. Unequal residential heating burden caused by combined heat and power phase-out under climate goals. Nature Energy 8(8), pp. 881–890, DOI: 10.1038/s41560-023-01308-6.
 
67.
Yu et al. 2023 – Yu, F., Feng, W., Luo, M., Kairui, Y., Minda, M., Rui, J., Leng, J. and Sun, L. 2023. Techno-economic analysis of residential building heating strategies for cost-effective upgrades in European cities. iScience 26(9), DOI: 10.1016/j.isci.2023.107541.
 
68.
Ziabina et al. 2023a – Ziabina, Y., Iskakov, A. and Senyah, M.M. 2023a. Waste management system: key determinants of green development and energy balance transformation. SocioEconomic Challenges 7(2), pp. 161–172, DOI: 10.21272/sec.7(2).161-172.2023.
 
69.
Ziabina et al. 2023b – Ziabina, Ye., Khomenko, L. and Osei Owusu, E.K. 2023b. Analysis of accidental transmission impacts in the chain «waste management system – public health». Health Economics and Management Review 4(2), pp. 74–82, DOI: 10.21272/hem.2023.2-07.
 
70.
Ziabina, Y. and Acheampong, S. 2023. Financial component of the waste management system. financial markets. Institutions and Risks 7(2), pp. 46–55, DOI: 10.21272/fmir.7(2).46-55.2023.
 
71.
Zimmermannova et al. 2023 – Zimmermannova, J., Smilnak, R., Perunova, M. and Ameir, O. 2023. Coal or biomass? Case study of consumption behaviour of households in the Czech Republic. Energies 16(1), DOI: 10.3390/en16010192.
 
eISSN:2720-569X
ISSN:1429-6675
Journals System - logo
Scroll to top