Lab-scale simulation of coal-nuclear synergy. Utilization of high temperature reactor excess heat in synthesis gas and hydrogen-rich gas production
A Smoliński 1  
 
More details
Hide details
1
Central Mining Institute, Katowice
 
Polityka Energetyczna – Energy Policy Journal 2015;18(1):69–83
 
KEYWORDS
ABSTRACT
The paper presents the results of the experimental study on simulated application of High Temperature Reactor (HTR) excess heat in the allothermal coal gasification to synthesis gas and hydrogen-rich gas. The effects of application of gasification agents pre-heating was tested in a laboratory scale fixed bed reactor installation. The installation was equipped with a specially designed auxiliary pre-heating system for gasification agents applied (air, oxygen or steam), simulating the utilization of the HTR excess heat. The results of the study proved the feasibility of the utilization of the external excess heat in air and steam coal gasification.
METADATA IN OTHER LANGUAGES:
Polish
Badania symulacyjne synergii węglowo-jądrowej. Zastosowanie ciepła nadmiarowego z reaktora HTR w procesie zgazowania węgla do gazu syntezowego i gazu bogatego w wodór
wysokotemperaturowy reaktor jądrowy, HTR, zgazowanie węgla, ciepło nadmiarowe, gaz syntezowy, wodór
W artykule przedstawiono wyniki badań symulacyjnych zastosowania ciepła nadmiarowego z wysokotemperaturowego reaktora jądrowego (HTR) w procesie allotermicznego zgazowania węgla do gazu syntezowego i gazu bogatego w wodór. Określono wpływ wstępnego przegrzania czynnika zgazowującego na wyniki procesu zgazowania w laboratoryjnej instalacji z reaktorem ze złożem stałym. Instalacja została wyposażona w specjalnie do tego celu zaprojektowany układ wstępnego przegrzania czynnika zgazowującego (powietrze, tlen lub para wodna), symulujący wykorzystanie ciepła nadmiarowego z reaktora HTR. Wyniki badań potwierdziły możliwość wykorzystania zewnętrznego źródła ciepła nadmiarowego w procesie zgazowania węgla powietrzem i para wodną.
 
REFERENCES (30)
1.
ARNDT et al. 1979 – ARNDT, E., FISCHER, R., FROEHLING, W., WEISBRODT, I., JUENTGEN, H. i TEGGERS, H. 1979. Substitute natural gas from coal using high-temperature reactor heat – Project “Prototype Plant Nuclear Process Heat”. Erdoel und Kohle Erdgas Petrochemie vereinigt mit Brennstoff-Chemie vol. 32, p. 17–23.
 
2.
BECKER, S. i LAURIEN, E. 2003. Three-dimensional numerical simulation of flow and heat transport in high-temperature nuclear reactors. Nuclear Engineering and Design vol. 222, p. 189–201.
 
3.
BELOV et al. 2012 – BELOV, S.E., BOROVKOV, M.N., GOLOVKOA, V.F., DMITRIEV, I.V., DRUMOV, I.V., ZNAMENSKY, D.S., KODOCHIGOV, N.G., BAXI, C.B., SHENOY, A., TELENGATOR, A. i RAZVI, J. 2012. Approaches to experimental validation of high-temperature gas-cooled reactor components. Nuclear Engineering and Design vol. 251, p. 2–17.
 
4.
Gasification technology database, 2010. Department of Energy, National Energy Technology Laboratory. http://www.netl.doe.gov/techno....
 
5.
CHIESA et al. 2005 – CHIESA, P., CONSONNI, S., KREUTZ, T. i WILLIAMS, R. 2005. Co-production of hydrogen, electricity and CO2 from coal with commercially ready technology. Part A: performance and emissions. International Journal of Hydrogen Energy vol. 30, p. 747–767.
 
6.
COLLOT, A.G. 2006. Matching gasification technologies to coal properties. International Journal of Coal Geology vol. 65, p. 191–212.
 
7.
CORMOS, C.C. 2009a. Hydrogen production from fossil fuels with carbon capture and storage based on chemical looping systems. International Journal of Hydrogen Energy vol. 34, p. 6065–6077.
 
8.
CORMOS, C.C. 2009b. Assessment of hydrogen and electricity co-production schemes based on gasification process with carbon capture and storage. International Journal of Hydrogen Energy vol. 34, p. 6065–6077.
 
9.
CORMOS, C.C. 2010. Evaluation of energy integration aspects for IGCC-based hydrogen and electricity co-production with carbon capture and storage. International Journal of Hydrogen Energy vol. 35, p. 7485–7497.
 
10.
CORMOS, C.C. 2011. Evaluation of power generation schemes based on hydrogen fuelled combined cycle with carbon capture and storage (CCS). International Journal of Hydrogen Energy vol. 36, p. 3726–3738.
 
11.
CORMOS et al. 2005 – CORMOS, C.C., STARR, F., TZIMAS, E. i PETEVES, S. 2008. Innovative concepts for hydrogen production processes based on coal gasification with CO2 capture. International Journal of Hydrogen Energy vol. 33, p. 1286–1294.
 
12.
FILIPPOV et al. 2004 – FILIPPOV, G.A., BOGOYAVLENSKII, R.G., PONOMAREV-STEPNOI, N.N. i GOLTSEV, A.O. 2004. Modular High-Temperature Helium-Cooled Nuclear Reactor with Spherical Fuel Elements for Electricity and Hydrogen Production. Atomic Energy vol. 96, p. 152–158.
 
13.
GORDILLO, E.D. i BELGHIT, A. 2011. A two phase model of high temperature steam-only gasification of biomass char in bubbling fluidized bed reactors using nuclear heat. International Journal of Hydrogen Energy vol. 66, p. 374–381.
 
14.
GUNGOR, A. 2011. Modeling the effects of the operational parameters on H2 composition in a biomass fluidized bed gasifier. International Journal of Hydrogen Energy vol. 36, p. 6592–6600.
 
15.
HOWANIEC, N. i SMOLIŃSKI, A. 2013. Steam co-gasification of coal and biomass–Synergy in reactivity of fuel blends chars. International Journal of Hydrogen Energy vol. 38, p. 16152–16160.
 
16.
International Energy Outlook 2013. Energy Information Administration, Office of Integrated Analysis and Forecasting, U.S. Department of Energy, Washington EIA; DOE/EIA04–84(2013).
 
17.
KUBIAK et al. 1993 – KUBIAK, H., VAN HEEK, K.H. i ZIEGLER, A. 1993. Nukleare Kohlevergasung - Erreichter Stand, Einschatzung und Nutzung der Ergebnisse, Fortschritte in der Energietechnik. Monographien des Forschungszentrums vol. 8, Julich.
 
18.
LOZOVETSKII, V.V. 2001. Simulation of the Motion of Spherical Fuel Pellets in the Core of a High-Temperature Gas-Cooled Reactor. Atomic Energy vol. 90, p. 119–129.
 
19.
METZ et al., eds. 2001 – METZ, B., DAVIDSON, O., SWART, R., PAN, J., eds. 2001. Climate Change 2001: Mitigation – Contribution of Working Group III to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge.
 
20.
METZ et al., eds. 2007 – METZ, B., DAVIDSON, O.R., BOSCH, P.R., DAVE, R., MEYER, L.A., eds. 2007. Climate Change 2007: Mitigation of Climate Change, Cambridge University Press, Cambridge and New York.
 
21.
MINCHENER, A.J. 2005. Coal gasification for advanced power generation. Fuel vol. 84, p. 2222–2235.
 
22.
MITENKOV et al. 2004 – MITENKOV, F.M., KODOCHIGOV, N.G, VASYAEV, A.V., GOLOVKO, V.F., PONOMAREV-STEPNOI N.N., KUKHARKIN N.E. i STOLYAREVSKII A.Y. 2004. High-temperature gas-cooled reactors – energy source for industrial production of hydrogen. Atomic Energy vol. 97, p. 829–840.
 
23.
SIMS et al. 2007 – SIMS, R.E.H., SCHOCK, R.N., ADEGBULULGBE, A., FENHANN J., KONSTANTINAVICIUTE, I., MOOMAW, W., NIMIR, H.B., SCHLAMADINGER, B., TORRES-MARTÍNEZ, J., TURNER, C., UCHIYAMA, Y., VUORI S.J.V., WAMUKONYA, N. i ZHANG, X. 2007. Energy supply. In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Metz B., Davidson O.R., Bosch P.R., Dave R., Meyer L.A., eds., Cambridge University Press, Cambridge and New York.
 
24.
SKOULOU et al. 2008 – SKOULOU, V., ZABANIOTOU, A., STAVROPOULOS, G. i SAKELAROPOULOS, G. 2008. Syngas production from olive tree cuttings and olive kernels in a downdraft fixed-bed gasifier. International Journal of Hydrogen Energy vol. 33, p. 1185–1194.
 
25.
SMOLIŃSKI, A. 2008. Gas chromatography as a tool for determining coal chars reactivity in the process of steam gasification. Acta Chromatographica vol. 20, p. 349–365.
 
26.
SMOLISKI, A. 2011. Coal char reactivity as a fuel selection criterion for coal-based hydrogen-rich gas production in the process of steam gasification. Energy Conversion and Management vol. 52, p. 37–45.
 
27.
SU et al. 2010 – SU, S., LI, W., BAI, Z., XIANG, H. i BAI, J. 2010. Effects of ionic catalysis on hydrogen production by the steam gasification of cellulose. International Journal of Hydrogen Energy vol. 35, p. 4459–4465.
 
28.
TOMECZEK, J. 1990. Zgazowanie węgla. Wydawnictwo Politechniki Śląskiej, Gliwice.
 
29.
VIRGIL et al. 2007 – VIRGIL, E.V., YU, S., KALYAGINA, I.P., ZEMLYANIKIN, V.F. i KLIMENKO, A.A. 2007. Graphite for the GT-MGR high-temperature gas-cooled reactor. Atomic Energy vol. 103, p. 780–782.
 
30.
ZHAO et al. 2011 – ZHAO, M., YANG, X., CHURCH, T.L. i HARRIS, A.T. 2011. Interaction between a bimetallic NiCo catalyst and micrometer-sized CaO for enhanced H2 production during cellulose decomposition. International Journal of Hydrogen Energy vol. 36, p. 421–431.
 
ISSN:1429-6675