ORIGINAL PAPER
The heat-transfer system modelling of the convective heating surfaces of a TP-92 steam boiler
 
More details
Hide details
1
Department of Heat Engineering and Thermal and Nuclear Power Plants, Lviv Polytechnic National University, Ukraine
 
2
Thermal Mechanical Department, JSC “Tekhenergo”, Ukraine
 
3
Department of Heat Engineering, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Ukraine
 
 
Submission date: 2022-06-08
 
 
Final revision date: 2022-08-17
 
 
Acceptance date: 2022-08-23
 
 
Publication date: 2022-09-29
 
 
Corresponding author
Taras Kravets   

Department of Heat Engineering and Thermal and Nuclear Power Plants, Lviv Polytechnic National University, 12 Bandera Str., 79013, Lviv, Ukraine
 
 
Polityka Energetyczna – Energy Policy Journal 2022;25(3):5-20
 
KEYWORDS
TOPICS
ABSTRACT
The relevance of the subject of research is determined by the need to develop and subsequently implement a mathematical model and the corresponding structural scheme of the convective heating surfaces of the TP-92 steam boiler. The purpose of this research work is to directly model the heat--transfer system of the convective heating surfaces of this boiler, designed for effective use in real conditions. The basis of the methodological approach in the research work is a combination of methods of the system analysis of the key principles of constructing mathematical models of heat-transfer systems of modern steam boilers with an experimental study of the prospects for creating a mathematical model of a heat-transfer system of the convective heating surfaces of a TP-92 steam boiler. In the course of the study, the results were obtained and presented in the form of a mathematical model of a convective heat-transfer system. It allows for making effective mathematical calculations of the main operating modes of the TP-92 steam boiler and calculating the dependences of the temperature and thermal modes of its operation on the change of incoming parameters of the used heat carriers, changes in the heating surface area and the relative flow rate of the heat carriers over the time of their use. The results obtained in the study, including the conclusions formulated on their basis, are of significant practical importance for the designers of steam boilers. The results also are useful for maintenance personnel, whose immediate responsibilities include determining the real possibilities of improving the convective heat-transfer system, based on the known parameters of the temperature of the coolant at the entrance to the system and at the exit from it.
METADATA IN OTHER LANGUAGES:
Polish
Modelowanie systemu wymiany ciepła konwekcyjnych powierzchni grzewczych kotła parowego TP-92
model matematyczny, spaliny, temperatura płynu chłodzącego, system wymiany ciepła, reżim temperatury powierzchni
O trafności przedmiotu badań decyduje potrzeba opracowania, a następnie wdrożenia modelu matematycznego i odpowiadającego mu schematu konstrukcyjnego konwekcyjnych powierzchni grzewczych kotła parowego TP-92. Celem pracy badawczej jest bezpośrednie zamodelowanie układu wymiany ciepła konwekcyjnych powierzchni grzewczych tego kotła, zaprojektowanego do efektywnego wykorzystania w warunkach rzeczywistych. Podstawą podejścia metodologicznego w pracy badawczej jest połączenie metod analizy systemowej kluczowych zasad budowy modeli matematycznych układów wymiany ciepła nowoczesnych kotłów parowych z eksperymentalnym badaniem perspektyw stworzenia modelu matematycznego układu wymiany ciepła konwekcyjnych powierzchni grzewczych kotła parowego TP-92. Uzyskane wyniki zaprezentowano w postaci modelu matematycznego konwekcyjnego układu wymiany ciepła. Pozwala to na wykonanie efektywnych obliczeń matematycznych głównych trybów pracy kotła parowego TP-92 oraz obliczenie zależności temperatury i trybów cieplnych jego pracy od zmian parametrów wejściowych stosowanych nośników ciepła, zmian powierzchni grzewczej oraz względnego natężenia przepływu nośników ciepła w czasie ich użytkowania. Uzyskane w pracy wyniki, w tym sformułowane na ich podstawie wnioski, mają duże znaczenie praktyczne dla projektantów kotłów parowych. Są one również przydatne dla personelu utrzymania ruchu, do którego bezpośrednich obowiązków należy określenie realnych możliwości udoskonalenia konwekcyjnego układu wymiany ciepła, w oparciu o znane parametry temperatury chłodziwa na wejściu do układu i na wyjściu z niego.
 
REFERENCES (21)
1.
Balaji et al. 2020 – Balaji, C., Srinivasan, B. and Gedupudi, S. 2020. Heat Transfer Engineering. London: Academic Press.
 
2.
Baubekov et al. 2018 – Baubekov, K.t., Berketov, S.s., Aitmagametova, G.A. and Zhangazy, A.K. 2018. Development of a scientific basis for creating highly efficient heat exchangers using the example of hot water and steam boilers. Science and Technology of Kazakhstan 3, pp. 16–20.
 
3.
Duroudier, j.p. 2016. Heat Transfer in the Chemical, Food and Pharmaceutical Industries. Oxford: Woodhead Publishing.
 
4.
Galyanchuk, I. and Kravets, T. 2020. Mathematical Modeling of the Heat Transfer System of the Convective Heating Surfaces of the TPP-210A Steam Boiler. Energy Engineering and Control Systems 6(1), pp. 16–22, DOI: 10.23939/jeecs2020.01.016.
 
5.
Galyanchuk et al. 2015 – Galyanchuk, I.R., Mysak, J.S. and Kuznetsova, M.Ya. 2015. Determination of the consequences of regime changes in the air heater of the boiler TP-100. Energy Technology and Resource Conservation 1, pp. 64–72.
 
6.
Khan et al. 2021 – Khan, A.I., Billah, M.M., Ying, C., Liu, J. and Dutta, P. 2021. Bayesian Method for Parameter Estimation in Transient Heat Transfer Problem. International Journal of Heat and Mass Transfer 166, DOI: 10.1016/j.ijheatmasstransfer.2020.120746.
 
7.
Laubscher, R. and Rousseau, P. 2019. Numerical investigation into the effect of burner swirl direction on furnace and superheater heat absorption for a 620 MWe opposing wall-fired pulverized coal boiler. International Journal of Heat and Mass Transfer 137, pp. 506–522, DOI: 10.1016/j.ijheatmasstransfer.2019.03.150.
 
8.
Medyanin et al. 2018 – Medyanin, A.V., Veretnov, D.A. and Taseiko, O.V. 2018. Measures to improve the energy efficiency of steam boilers. Actual Problems of Aviation and Astronautics 8, pp. 276–276.
 
9.
Milicevic et al., 2021 – Milicevic, A., Belosevic, S., Crnomarkovic, N., Tomarovic, I., Stojanovic, A., Tucanovic, D., Deng, L. and Che, D. 2021. Numerical study of co-firing lignite and agricultural biomass in utility boiler under variable operation conditions. International Journal of Heat and Mass Transfer 181, DOI: 10.1016/j.ijheatmasstransfer.2021.121728.
 
10.
Mysak et al. 2016 – Mysak, J., Galyanchuk, I. and Kuznetsova, M. 2016. Development of mathematical models and the calculations of elements of convective heat transfer systems. Eastern European Journal of Advanced Technologies 82(4/8), pp. 33–41, DOI: 10.15587/1729-4061.2016.74826.
 
11.
Panov et al. 2015 – Panov, A.V., Kuznetsov, A.A. and Chernyak, N.N. 2015. Study of convective processes in capacitive heat exchangers. Engineering Bulletin of the Don 3, pp. 22–32.
 
12.
Redko, A. and Redko, O. 2021. Heat Exchange of Tubular Surfaces in a Bubbling Boiling Bed. Oxford: Elsevier.
 
13.
Sakar, D. 2016. Thermal Power Plant. Oxford: Elsevier.
 
14.
Sheikholeslami, M. and Ganji, D.D. 2017. Applications of Nanofluid for Heat Transfer Enhancement. Oxford: Elsevier.
 
15.
Sparrow et al. 2016 – Sparrow, E.M., Abraham, J. and Gorman, J. 2016. Advances in Heat Transfer. London: Academic Press.
 
16.
Vakkilainen, E.K. 2016. Steam Generation from Biomass. Oxford: Woodhead Publishing.
 
17.
Xu et al. 2021 – Xu, Q., Liang, L., She, Y., Xie, X. and Guo, L. 2021. Numerical investigation on thermal hydraulic characteristics of steam jet condensation in subcooled water flow in pipes. International Journal of Heat and Mass Transfer 4, DOI: 10.1016/j.ijheatmasstransfer.2021.122277.
 
18.
Zainullin, R.R. and Galyautdinov, A.A. 2016. Features of the use of once-through steam boilers. Innovative Science 5, pp. 109–110.
 
19.
Zaporozhets et al. 2021 – Zaporozhets, A., Babak, V., Sverdlova, A., Isaienko, V. and Babikova, K. 2021. Development of a system for diagnosing heat power equipment based on IEEE 802.11s. Studies in Systems, Decision and Control 346, pp. 141–151, DOI: 10.1007/978-3-030-69189-9_8.
 
20.
Zhang et al. 2021 – Zhang, T.Y., Zhang, Y.C., Mou, L.W., Liu, M.J. and Fan, L.W. 2021. Substrate thermal conductivity-mediated droplet dynamics for condensation heat transfer enhancement on honeycomb-like superhydrophobic surfaces. International Journal of Heat and Mass Transfer 183, DOI: 10.1016/j.ijheatmasstransfer.2021.122207.
 
21.
Zhang et al. 2016 – Zhang, Y., Li, Q. and Zhou, H. 2016. Theory and Calculation of Heat Transfer in Furnaces. London: Academic Press.
 
eISSN:2720-569X
ISSN:1429-6675
Journals System - logo
Scroll to top