ORIGINAL PAPER
Development and research of a generating complex for agricultural facilities using renewable energy sources
More details
Hide details
1
Department of Electric Power Industry, Akhmet Baitursynuly Kostanay Regional University, Kazakhstan
2
Department of Software, Akhmet Baitursynuly Kostanay Regional University, Kazakhstan
3
Department of Physics, Mathematics and Digital Technology, Akhmet Baitursynuly Kostanay Regional University, Kazakhstan
Submission date: 2025-04-24
Final revision date: 2025-06-11
Acceptance date: 2025-06-12
Publication date: 2025-12-19
Polityka Energetyczna – Energy Policy Journal 2025;28(4):21-44
KEYWORDS
TOPICS
ABSTRACT
The study aimed to determine the advantages of introducing a generating complex based on renewable energy sources to enhance sustainability and energy efficiency in agricultural facilities. The use of renewable energy in agriculture was investigated, evaluating a model integrating a Bergey Excel 10 wind turbine, NIBE F1155 geothermal system, and JA Solar JAM72S20-405/PR solar panels with a SolarEdge SE40K inverter. The integration of these renewable energy sources significantly reduced energy costs, with savings ranging from 5,500 kWh to 180,000 kWh per year compared to conventional sources. The analysis also highlighted the potential of using biomass as an alternative fuel for heating and agricultural equipment, reducing carbon emissions and contributing to a more sustainable energy system. The study revealed that the payback period for investments in renewable technologies makes them economically feasible. Furthermore, the use of renewable energy improved agricultural productivity by lowering energy costs and enhancing working conditions. The environmental impact analysis showed a reduction in CO2 emissions by 10–25 tonnes per year, benefiting local ecosystems. The findings also suggest that the adoption of renewable energy sources can stimulate job creation in agriculture, fostering regional economic development. Overall, the study confirms that renewable energy use in agriculture not only enhances energy independence but also contributes to environmental sustainability and economic growth.
CONFLICT OF INTEREST
The Authors have no conflicts of interest to declare
METADATA IN OTHER LANGUAGES:
Polish
Opracowanie i badania kompleksu wytwórczego dla obiektów rolniczych wykorzystującego odnawialne źródła energii
panele słoneczne, turbiny wiatrowe, zrównoważony rozwój środowiska, paliwa alternatywne, oszczędności
Badanie przeprowadzono w celu określenia możliwości i zalet wprowadzenia kompleksu wytwórczego opartego na odnawialnych źródłach energii w celu zwiększenia zrównoważonego rozwoju i efektywności energetycznej obiektów rolniczych. Zbadano wykorzystanie odnawialnych źródeł energii w rolnictwie. W tym celu oceniono model kompleksu wytwórczego wykorzystującego odnawialne źródła energii dla zaspokojenia potrzeb energetycznych obiektów rolniczych. Rozważono wpływ integracji turbiny wiatrowej Bergey Excel 10, instalacji geotermalnej NIBE F1155 oraz paneli słonecznych JA Solar JAM72S20-405/PR z falownikiem SolarEdge SE40K na systemy energetyczne obiektów rolniczych. Integracja paneli słonecznych i turbin wiatrowych małej mocy znacznie obniżyła koszty energii, pozwalając na oszczędności od 5500 kWh do 180 000 kWh rocznie w porównaniu z konwencjonalnymi źródłami. Analiza wykazała, że wykorzystanie biomasy jako alternatywnego paliwa do ogrzewania i obsługi sprzętu rolniczego może nie tylko zmniejszyć emisję dwutlenku węgla, lecz także zapewnić bardziej zrównoważony system energetyczny. Podczas oceny efektywności kompleksu okazało się, że okres zwrotu inwestycji w takie technologie czyni je ekonomicznie wykonalnymi. Ponadto ustalenia wykazały, że produktywność obiektów rolniczych wzrosła dzięki poprawie warunków pracy i niższym kosztom energii. Uzyskane dane potwierdzają, że wykorzystanie odnawialnych źródeł energii w sektorze rolnym przyczynia się nie tylko do zwiększenia niezależności energetycznej, lecz także do poprawy ogólnej równowagi środowiskowej. Analiza wpływu kompleksu wytwórczego na środowisko wykazała zmniejszenie poziomu emisji zanieczyszczającego CO2 o 10–25 ton rocznie, co miało pozytywny wpływ na zdrowie lokalnych ekosystemów. Badanie wykazało również, że wprowadzenie odnawialnych źródeł energii może być zachętą do tworzenia nowych miejsc pracy w sektorze rolniczym, co przyczynia się do rozwoju gospodarczego regionu.
REFERENCES (53)
2.
Ababneh, H. and Hameed, B.H. 2022. Electrofuels as emerging new green alternative fuel: A review of recent literature. Energy Conversion and Management 254, DOI: 10.1016/j.enconman.2022.115213.
3.
Akheel et al. 2024 – Akheel, M.M., Sankar, B., Boopathi, K. Reddy Prasad, D.M., Prabhu Shankar, N. and Rajkumar, N. 2024. Optimizing efficiency and analyzing performance: Enhanced airfoil cross-sections for horizontal axis small wind turbines. Wind Engineering 49(1), pp. 162–180, DOI: 10.1177/0309524X241259946.
4.
Akhtar et al. 2021 – Akhtar, I., Kirmani, S. and Jameel, M. 2021. Reliability assessment of power system considering the impact of renewable energy sources integration into grid with advanced intelligent strategies. IEEE Access 9, pp. 32485–32497, DOI: 10.1109/ACCESS.2021.3060892.
5.
Anguelov, K. and Kavaldzhieva, K. 2021. Methodology for determining the socio-economic factors in the performance of Cost-Benefit Analysis for the production of electricity from biomass. [In:] 2021 17th Conference on Electrical Machines, Drives and Power Systems, ELMA 2021 – Proceedings. Sofia: Institute of Electrical and Electronics Engineers, DOI: 10.1109/ELMA52514.2021.9502978.
6.
Avgoustaki, D.D. and Xydis, G. 2021. Energy cost reduction by shifting electricity demand in indoor vertical farms with artificial lighting. Biosystems Engineering 211, pp. 219–229, DOI: 10.1016/j.biosystemseng.2021.09.006.
7.
Bogdanov et al. 2021 – Bogdanov, D., Gulagi, A., Fasihi, M. and Breyer, C. 2021. Full energy sector transition towards 100% renewable energy supply: Integrating power, heat, transport and industry sectors including desalination. Applied Energy 283, DOI: 10.1016/j.apenergy.2020.116273.
8.
Buzaubayeva et al. 2023 – Buzaubayeva, P., Gulzhan, A., Baimagambetova, Z. and Kenges, G. 2023. Financial technologies to support agricultural innovations in Kazakhstan: Prospects for digital development. Futurity of Social Sciences 1(2), pp. 30–44, DOI: 10.57125/FS.2023.06.20.03.
9.
Cen et al. 2021 – Cen, S., Li, K., Liu, Q. and Jiang, Y. 2021. Solar energy-based hydrogen production and post-firing in a biomass fueled gas turbine for power generation enhancement and carbon dioxide emission reduction. Energy Conversion and Management 233, DOI: 10.1016/j.enconman.2021.113941.
10.
Chernets et al. 2008 – Chernets, O.V., Korzhyk, V.M., Marynsky, G.S., Petrov, S.V. and Zhovtyansky, V.A. 2008. Electric arc steam plasma conversion of medicine waste and carbon containing materials. GD 2008 - 17th International Conference on Gas Discharges and Their Applications 465–468. [Online:]
https://ieeexplore.ieee.org/do... [Accessed: 2025-10-05].
12.
Dai et al. 2025 – Dai, Z.C., Tan, M., Yang, Y., Liu, X., Wang, R. and Su, Y.X. 2025. Massive Coordination of Distributed Energy Resources in VPP: A Mean Field RL-Based Bi-Level Optimization Approach. IEEE TRANSACTIONS ON CYBERNETICS, DOI: 10.1109/TCYB.2024.3525121.
13.
Delapedra-Silva et al. 2022 – Delapedra-Silva, V., Ferreira, P., Cunha, J. and Kimura, H. 2022. Methods for financial assessment of renewable energy projects: A review. Processes 10(2), DOI: 10.3390/pr10020184.
14.
Dhonde et al. 2022 – Dhonde, M., Sahu, K. and Murty, V.V.S. 2022. The application of solar-driven technologies for the sustainable development of agriculture farming: A comprehensive review. Reviews in Environmental Science and Bio/Technology 21(2), pp. 139–167, DOI: 10.1007/s11157-022-09611-6.
15.
Do et al. 2021 – Do Thi, H.T., Pasztor, T., Fozer, D., Manenti, F. and Toth, A.J. 2021. Comparison of desalination technologies using renewable energy sources with life cycle, PESTLE, and multi-criteria decision analyses. Water 13(21), DOI: 10.3390/w13213023.
16.
Dong et al. 2021 – Dong, H., Xue, M., Xiao, Y. and Liu, Y. 2021. Do carbon emissions impact the health of residents? Considering China’s industrialization and urbanization. Science of the Total Environment 758, DOI: 10.1016/j.scitotenv.2020.143688.
17.
Elahi et al. 2022 – Elahi, E., Khalid, Z. and Zhang, Z. 2022. Understanding farmers’ intention and willingness to install renewable energy technology: A solution to reduce the environmental emissions of agriculture. Applied Energy 309, DOI: 10.1016/j.apenergy.2021.118459.
19.
Fu, X. and Niu, H. 2023. Key technologies and applications of agricultural energy internet for agricultural planting and fisheries industry. Information Processing in Agriculture 10(3), pp. 416–437, DOI: 10.1016/j.inpa.2022.10.004.
20.
Halko et al. 2021 – Halko, S., Suprun, O. and Miroshnyk, O. 2021. Influence of temperature on energy performance indicators of hybrid solar panels using cylindrical cogeneration photovoltaic modules. [In:] 2021 IEEE 2nd KhPI Week on Advanced Technology, KhPI Week 2021 – Conference Proceedings, pp. 132–136. Kharkiv: Institute of Electrical and Electronics Engineers, DOI: 10.1109/KhPIWeek53812.2021.9569975.
21.
Ismanzhanov et al. 2012 – Ismanzhanov, A.I., Murzakulov, N.A. and Azimzhanov, O.A. 2012. Investigation on heat exchange in interlayer space of multilayer greenhouses. Applied Solar Energy 48(2), pp. 118–120, DOI: 10.3103/S0003701X12020107.
22.
Ismanzhanov, A.I. and Tashiev, N.M. 2016. Development and research of the technology for powdering agricultural products using solar energy. Applied Solar Energy 52(4), pp. 256–258, DOI: 10.3103/S0003701X16040101.
23.
Jeločnik, M. and Subić, J. 2021. Economic effects of the wind-turbine and solar panels application in vegetables’ production at the family farms. [In:] IX International Scientific-Practical Conference: Innovative Aspects of the Development Service and Tourism, pp. 61–75. Stavropol: Sequoia.
24.
Kebede et al. 2022 – Kebede, A.A., Kalogiannis, T., Van Mierlo, J. and Berecibar, M. 2022. A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration. Renewable and Sustainable Energy Reviews 159, DOI: 10.1016/j.rser.2022.112213.
25.
Kherzri et al. 2022 – Khezri, M., Heshmati, A. and Khodaei, M. 2022. Environmental implications of economic complexity and its role in determining how renewable energies affect CO₂ emissions. Applied Energy 306, DOI: 10.1016/j.apenergy.2021.117948.
26.
Kravtsova et al. 2024 – Kravtsova, D., Ziuhan, U. and Fraimovych, A. 2024. Solar panels’ energy efficiency optimisation using mathematical methods with computerisation of calculations. Journal of Kryvyi Rih National University 22(2), pp. 68–72, DOI: 10.31721/2306-5451-2024-2-22-68-72.
27.
Linchenko et al. 2022 – Linchenko, V., Zhuk, D., Lysenko, N., Stepenko, S. and Zhuk, I. 2022. Green energy: Problems of environmental protection. Ecological Safety and Balanced Use of Resources, 13(2), pp. 58–68, DOI: 10.31471/2415-3184-2022-2(26)-58-68.
28.
Lubishtani, M. and Lubishtani, F.B. 2024. Using geodetic data to optimize the distribution of solar and wind energy installations. Machinery & Energetics 15(2), pp. 69–80, DOI: 10.31548/machinery/2.2024.69.
29.
Luca, B. 2022. Energy assessment of a geothermal heat pump system in a residential context. Torino: Politecnico di Torino.
30.
Mahalik et al. 2021 – Mahalik, M.K., Mallick, H. and Padhan, H. 2021. Do educational levels influence the environmental quality? The role of renewable and non-renewable energy demand in selected BRICS countries with a new policy perspective. Renewable Energy 164, pp. 419–432, DOI: 10.1016/j.renene.2020.09.090.
31.
Mathur et al. 2022 – Mathur, S., Waswani, H., Singh, D. and Ranjan, R. 2022. Alternative fuels for agriculture sustainability: Carbon footprint and economic feasibility. AgriEngineering 4(4), pp. 993–1015, DOI: 10.3390/agriengineering4040063.
32.
Mik et al. 2021 – Mik, K., Zawadzki, P., Tarłowski, J., Bugaj, M., Grygiel, P. and Bykuć, S. 2021. Multifaceted analyses of four different prototype lightweight photovoltaic modules of novel structure. Energies 14(8), DOI: 10.3390/en14082239.
33.
Mohsin et al. 2022 – Mohsin, M., Taghizadeh-Hesary, F., Iqbal, N. and Saydaliev, H.B. 2022. The role of technological progress and renewable energy deployment in green economic growth. Renewable Energy 190, pp. 777–787, DOI: 10.1016/j.renene.2022.03.076.
34.
Myronycheva et al. 2017 – Myronycheva, O., Bandura, I., Bisko, N., Gryganskyi, A.P. and Karlsson, O. 2017. Assessment of the growth and fruiting of 19 oyster mushroom strains for indoor cultivation on lignocellulosic wastes. BioResources 12(3), pp. 4606–4626, DOI: 10.15376/biores.12.3.4606-4626.
35.
Newton et al. 2021 – Newton, A.C., Evans, P.M., Watson, S.C.L., Ridding, L.E., Brand, B., McCracken, M., Gosal, A.S. and Bullock, J.M. 2021. Ecological restoration of agricultural land can improve its contribution to economic development. PloS One 16(3), e0247850, DOI: 10.1371/journal.pone.0247850.
36.
Nguyen et al. 2021 – Nguyen, X.P., Hoang, A.T., Ölçer, A.I., Engel, D., Pham, V.V. and Nayak, S.K. 2021. Biomass-derived 2.5-dimethylfuran as a promising alternative fuel: An application review on the compression and spark ignition engine. Fuel Processing Technology 214, DOI: 10.1016/j.fuproc.2020.106687.
37.
Pathak et al. 2022 – Pathak, S.K., Sharma, V., Chougule, S.S. and Goel, V. 2022. Prioritization of barriers to the development of renewable energy technologies in India using integrated Modified Delphi and AHP method. Sustainable Energy Technologies and Assessments 50, DOI: 10.1016/j.seta.2021.101818.
38.
Paton et al. 2005 – Paton, B.E., Chernets, A.V., Marinsky, G.S., Korzhik, V.N. and Petrov, V.S. 2005. Prospects of using plasma technologies for disposal and recycling of medical and other hazardous waste. Part 2. Problemy Spetsial’noj Electrometallugii (4), pp. 46–54.
39.
Prokopov et al. 1989 – Prokopov, V.G., Shvets, Y.I., Fialko, N.M., Meranova, N.O., Korzhik, V.N. and Borisov, Y.S. 1989. Mathematical-modeling of the convective heat-transfer processes during formation of the gas-thermal coating layer. Dopovidi Akademii Nauk Ukrainskoi RSR, Seriya A-Fiziko-Matematichni ta Technichni Nauki 6, pp. 71–76.
40.
Prokopov et al. 1993 – Prokopov, V.G., Fialko, N.M., Sherenkovskaya, G.P., Yurchuk, V.L., Borisov, Y.S., Murashov, A.P. and Korzhik, V.N. 1993. Effect of coating porosity on the process of heat-transfer with gas-thermal deposition. Powder Metallurgy and Metal Ceramics 32(2), pp. 118–121, DOI: 10.1007/BF00560034.
41.
Qadir et al. 2021 – Qadir, S.A., Al-Motairi, H., Tahir, F. and Al-Fagih, L. 2021. Incentives and strategies for financing the renewable energy transition: A review. Energy Reports 7, pp. 3590–3606, DOI: 10.1016/j.egyr.2021.06.041.
42.
Rahman et al. 2022 – Rahman, M.M., Khan, I., Field, D.L., Techato, K. and Alameh, K. 2022. Powering agriculture: Present status, future potential, and challenges of renewable energy applications. Renewable Energy 188, pp. 731–749, DOI: 10.1016/j.renene.2022.02.065.
43.
Rahmat et al. 2022 – Rahmat, M.A.A., Abd Hamid, A.S., Lu, Y., Ishak, M.A.A., Suheel, S.Z., Fazlizan, A. and Ibrahim, A. 2022. An analysis of renewable energy technology integration investments in Malaysia using HOMER pro. Sustainability 14(20), DOI: 10.3390/su142013684.
44.
Rashed, A.H. and Shah, A. 2021. The role of private sector in the implementation of sustainable development goals. Environment, Development and Sustainability 23(3), pp. 2931–2948, DOI: 10.1007/s10668-020-00718-w.
45.
Sasikumar et al. 2021 – Sasikumar, C., Sundaresan, R., Nagaraja, M. and Rajaganapathy, C. 2021. A review on energy generation from manure biomass. Materials Today: Proceedings 45, pp. 2408–2412, DOI: 10.1016/j.matpr.2020.10.832.
46.
Scolaro, M. and Kittner, N. 2022. Optimizing hybrid offshore wind farms for cost-competitive hydrogen production in Germany. International Journal of Hydrogen Energy 47(10), pp. 6478–6493, DOI: 10.1016/j.ijhydene.2021.12.062.
47.
Shebanin et al. 2025 – Shebanin, V., Kormyshkin, A., Ruzhniak, M., Reshetilov, G., and Kormyshkina, I. 2025. Formation of complex community restoration management models in the context of sustainable agricultural development. Scientific Horizons 28(2), pp. 116–128, DOI: 10.48077/scihor2.2025.116.
48.
Shram, О. and Kachan, Yu. 2023. Determination of appropriate energy storage devices in the power grids of industrial enterprises. Journal of Kryvyi Rih National University 21(2), pp. 52–59, DOI: 10.31721/2306-5451-2023-1-57-52-59.
49.
Smyk, I. and Arkhypova, L. 2023. Analysis of influence of meteorological conditions on the efficiency of solar panels in Ivano-Frankivsk Region. Ecological Safety and Balanced Use of Resources 14(1), pp. 99–107, DOI: 10.31471/2415-3184-2023-1(27)-99-107.
50.
Temirbaeva et al. 2024 – Temirbaeva, N., Sadykov, M., Osmonov, Zh., Osmonov, Y. and Karasartov, U. 2024. Renewable energy sources in Kyrgyzstan and energy supply to rural consumers. Machinery & Energetics 15(3), pp. 22–32, DOI: 10.31548/machinery/3.2024.22.
51.
Tomaszewska et al. 2021 – Tomaszewska, B., Akkurt, G.G., Kaczmarczyk, M., Bujakowski, W., Keles, N., Jarma, Y.A., Baba, A., Bryjak, M. and Kabay, N. 2021. Utilization of renewable energy sources in desalination of geothermal water for agriculture. Desalination 513, DOI: 10.1016/j.desal.2021.115151.
52.
UNDP Kazakhstan 2023. Financial support programs for entrepreneurs implementing energy efficiency and renewable energy projects. [Online:]
https://www.undp.org/kazakhsta... [Accessed: 2025-09-21].
53.
Yap et al. 2022 – Yap, K.Y., Chin, H.H. and Klemeš, J.J. 2022. Solar energy-powered battery electric vehicle charging stations: Current development and future prospect review. Renewable and Sustainable Energy Reviews 169, DOI: 10.1016/j.rser.2022.112862.