ORIGINAL PAPER
Recycling potential of wind turbines supporting by European Green Deal policy – comparative energy analysis between Poland and Germany
 
More details
Hide details
1
DEIM, University of Tuscia, Italy
 
 
Submission date: 2025-04-13
 
 
Final revision date: 2025-06-13
 
 
Acceptance date: 2025-06-16
 
 
Publication date: 2025-12-19
 
 
Corresponding author
Satyajit Chowdhury   

DEIM, University of Tuscia, Via SM in Gradi n.4, 01100, Viterbo, Italy
 
 
Polityka Energetyczna – Energy Policy Journal 2025;28(4):201-226
 
KEYWORDS
TOPICS
ABSTRACT
The European Green Deal represents a landmark initiative aimed at steering the continent towards a sustainable future, with renewable wind energy occupying a central role in this transition. This research delves into the multifaceted aspects of renewable wind energy within the context of the European Green Deal, focusing on several key dimensions. Firstly, the study examines the energy generation associated with both wind energy and coal energy, providing a comparative analysis to underscore the environmental advantages of renewable alternatives. Through detailed case studies centered on coal mining regions in Poland and Germany, the socio-economic dynamics of transitioning from coal-dependent economies to renewable energy systems are explored, elucidating the challenges and opportunities inherent in such transitions. The end-of-life management of wind turbines, particularly recycling and reuse, presents significant challenges. This paper analyzes the recycling potential of wind turbines in Poland and Germany under the European Green Deal policy. While up to 85% of turbine components can be recycled, composite material blades, made of glass fibers and plastic polymers, remain difficult to recycle due to their complex structure. Furthermore, the research investigates the application of circular economy principles within the wind energy sector, emphasizing strategies for resource efficiency, recycling, and waste reduction. This research has the most important impact on the European Green Deal and makes a new European zone with the goal of achieving zero carbon emissions. By synthesizing these diverse strands, this study contributes to a comprehensive understanding of how renewable wind energy can serve as a linchpin for achieving sustainability objectives outlined in the European Green Deal.
CONFLICT OF INTEREST
The Author has no conflicts of interest to declare
METADATA IN OTHER LANGUAGES:
Polish
Potencjał recyklingu turbin wiatrowych wspierany przez politykę Europejskiego Zielonego Ładu – analiza porównawcza energetyczna Polski i Niemiec
recykling turbin wiatrowych, Europejski Zielony Ład, gospodarka o obiegu zamkniętym, energia odnawialna, zrównoważony rozwój
Europejski Zielony Ład stanowi przełomową inicjatywę mającą na celu skierowanie kontynentu w stronę zrównoważonej przyszłości, a odnawialna energia wiatrowa odgrywa kluczową rolę w tej transformacji. Niniejsze badania zgłębiają wielowymiarowe aspekty odnawialnej energii wiatrowej w kontekście Europejskiego Zielonego Ładu, koncentrując się na kilku kluczowych wymiarach. Przede wszystkim w badaniu analizuje się wytwarzanie energii zarówno z energii wiatrowej, jak i węglowej, przedstawiając analizę porównawczą w celu podkreślenia korzyści środowiskowych wynikających z alternatywnych źródeł energii odnawialnej. Na podstawie szczegółowych studiów przypadków skupiających się na regionach wydobycia węgla w Polsce i Niemczech badana jest dynamika społeczno-gospodarcza przejścia od gospodarek uzależnionych od węgla do systemów energii odnawialnej. Wyjaśniane są także wyzwania i możliwości związane z takimi przemianami. Zarządzanie turbinami wiatrowymi po zakończeniu ich eksploatacji, w szczególności recykling i ponowne wykorzystanie, stanowi poważne wyzwanie. W niniejszym artykule przeanalizowano potencjał recyklingowy turbin wiatrowych w Polsce i Niemczech w ramach Europejskiego Zielonego Ładu. Mimo że 85% elementów turbin można poddać recyklingowi, łopaty wykonane z materiałów kompozytowych, takich jak włókna szklane i polimery plastikowe, są trudne do recyklingu ze względu na swoją złożoną strukturę. Ponadto badania dotyczą zastosowania zasad gospodarki o obiegu zamkniętym w sektorze energii wiatrowej, z naciskiem na strategie efektywnego wykorzystania zasobów, recyklingu i redukcji odpadów. Badania te mają największy wpływ na Europejski Zielony Ład i tworzą nową strefę europejską, której celem jest osiągnięcie zerowej emisji dwutlenku węgla. Dzięki połączeniu różnych wątków niniejsze badanie przyczynia się do kompleksowego zrozumienia, w jaki sposób odnawialna energia wiatrowa może służyć jako podstawa do osiągnięcia celów zrównoważonego rozwoju, określonych w Europejskim Zielonym Ładzie.
REFERENCES (56)
1.
Andersen, P. 2019. Recycling challenges of composite materials in wind turbines. Journal of Sustainable Materials 12(3), pp. 144–155.
 
2.
Andersen et al. 2021 – Andersen, P., Brown, L. and Jones, M. 2021. Recycling processes for NdFeB magnets in wind turbines.
 
3.
Beauson et al. 2014 – Beauson, J., Lilholt, H. and Brondsted, P. 2014. Recycling solid residues recovered from glass fibre-reinforced composites – A review applied to wind turbine blade materials. Journal of Reinforced Plastics and Composites 33(16), DOI: 10.1177/0731684414537131.
 
4.
Beauson et al. 2016 – Beauson, J., Madsen, B., Toncelli, C., Brondsted, P. and Bech, J.I. 2016. Recycling of shredded composites from wind turbine blades in new thermoset polymer composites. Composites Part A-Applied Science and Manufacturing 90, pp. 390–399, DOI: 10.1016/j.compositesa.2016.07.009.
 
5.
Bonou et al. 2016 – Bonou, A., Laurent, A. and Olsen, S.I. 2016. Life cycle assessment of onshore and offshore wind energy-from theory to application. Applied Energy 180, pp. 327–337, DOI: 10.1016/j.apenergy.2016.07.058.
 
6.
Brauers et al. 2020 – Brauers, H. Oei, P.Y. and Walk, P. 2020 – Comparing coal phase-out pathways: The United Kingdom’s and Germany’s diverging transitions. Environmental Innovation and Societal Transitions 37, pp. 238–253, DOI: 10.1016/j.eist.2020.09.001.
 
7.
Bukowski et al. 2018 – Bukowski, M., Śniegocki, A. and Wetmańska, Z. 2018. From restructuring to sustainable development. The case of Upper Silesia. Warszawa.
 
8.
Buschmann, P. and Oels, A. 2019. The overlooked role of discourse in breaking carbon lock‐in: The case of the German energy transition. WIREs Climate Change 10(3), DOI: 10.1002/wcc.574.
 
9.
Clark et al. 2018 – Clark, D., Johnson, R. and Miller, T. 2018. Policy support for wind turbine recycling. Environmental Policy Journal 22(2), pp. 145–157.
 
10.
Davis, K. 2019. Challenges in Recycling Wind Turbine Blades. Composite Materials Review 12(2), pp. 178–189.
 
11.
Diez-Cañamero, B. and Mendoza, J.M.F. 2023. Circular economy performance and carbon footprint of wind turbine blade waste management alternatives. Waste Management 164, pp. 94–105, DOI: 10.1016/j.wasman.2023.03.041.
 
12.
Dupont, D. and Binnemans, K. 2015. Recycling of rare earths from NdFeB magnets using a combined leaching/extraction system based on the acidity and thermomorphism of the ionic liquid [Hbet][Tf2N]. Green Chemistry 17, pp. 2150–2163, DOI: 10.1039/c5gc00155b.
 
13.
Furnaro et al. 2021 – Furnaro, A., Herpich, P., Brauers, H., Oei, P.-Y., Kemfert, C. and Look, W. 2021. German Just Transition: A Review of Public Policies to Assist German Coal Communities in Transition. Resources for the Future, Report, November 21–13, 2021. [Online] https://www.rff.org/publicatio... [Accessed: 2025-09-21].
 
14.
Giorgini et al. 2020 – Giorgini, L., Benelli, T., Brancolini, G. and Mazzocchetti, L. 2020. Recycling of carbon fiber reinforced composite waste to close their life cycle in a cradle-to-cradle approach. Current Opinion In Green And Sustainable Chemistry 26, DOI: 10.1016/j.cogsc.2020.100368.
 
15.
Habib, K. and Wenzel, H. 2014. Exploring rare earths supply constraints for the emerging clean energy technologies and the role of recycling. Journal of Cleaner Production 84, pp. 348–359, DOI: 10.1016/j.jclepro.2014.04.035.
 
16.
Harris, J. 2019. Policy and Regulation in Wind Turbine Blade Recycling. Public Policy Review 11(2), pp. 99–110.
 
17.
Janikowska, O. and Kulczycka, J. 2021. Just transition as a tool for preventing energy poverty among women in mining areas – A case study of the Silesia region, Poland. Energies 14(12), DOI: 10.3390/en14123372.
 
18.
Jensen, J.P. 2019. Evaluating the environmental impacts of recycling wind turbines. Wind Energy 22, pp. 316–326, DOI: 10.1002/we.2287.
 
19.
Jensen, J.P. and Skelton, K. 2018. Wind turbine blade recycling: Experiences, challenges and possibilities in a circular economy. Renewable & Sustainable Energy Reviews 97, pp. 165–176, DOI: 10.1016/j.rser.2018.08.041.
 
20.
Jensen et al. 2020 – Jensen, P.D., Purnell, P. and Velenturf, A.P.M. 2020. Highlighting the need to embed circular economy in low carbon infrastructure decommissioning: The case of offshore wind. Sustainable Production and Consumption 24, pp. 266–280, DOI: 10.1016/j.spc.2020.07.012.
 
21.
Jones, A. 2019. Recycling Electrical Components of Wind Turbines. Renewable Energy Review 22(4), pp. 456–467.
 
22.
Keles, D. and Yilmaz, H.Ü. 2020. Decarbonisation through coal phase-out in Germany and Europe –Impact on Emissions, electricity prices and power production. Energy Policy 141, DOI: 10.1016/j.enpol.2020.111472.
 
23.
Khalid et al. 2023 – Khalid, M.Y., Arif, Z.U., Hossain, M. and Umer, R. 2023. Recycling of wind turbine blades through modern recycling technologies: A road to zero waste. Renewable Energy Focus 44, pp. 373–389, DOI: 10.1016/j.ref.2023.02.001.
 
24.
Kilkis et al. 2019 – Kilkis, S., Krajacic, G., Duic, N., Montorsi, L., Wang, Q., Rosen, M.A. and Al-Nimr, Moh’d A. 2019. Research frontiers in sustainable development of energy, water and environment systems in a time of climate crisis. Energy Conversion and Management 199, DOI: 10.1016/j.enconman.2019.111938.
 
25.
Krauklis et al. 2021 – Krauklis, A.E., Karl, C.W., Gagani, A.I. and Jorgensen, J.K. 2021. Composite Material Recycling Technology-State-of-the-Art and Sustainable Development for the 2020s. Journal of Composites Science 5(1), DOI: 10.3390/jcs5010028.
 
26.
Krohn et al. 2009 – Krohn, S., Morthorst, P.E. and Awerbuch, S. 2009. The economics of wind energy. By the European Wind Energy Association.
 
27.
Lefeuvre et al. 2019 – Lefeuvre, A., Garnier, S., Jacquemin, L., Pillain, B. and Sonnemann, G. 2019. Anticipating in-use stocks of carbon fibre reinforced polymers and related waste generated by the wind power sector until 2050. Resources Conservation and Recycling 141, pp. 30–39, DOI: 10.1016/j.resconrec.2018.10.008.
 
28.
Lichtenegger et al. 2020 – Lichtenegger, G., Rentizelas, A.A., Trivyza, N. and Siegl, S. 2020. Offshore and onshore wind turbine blade waste material forecast at a regional level in Europe until 2050. Waste Management 106, pp. 120–131, DOI: 10.1016/j.wasman.2020.03.018.
 
29.
Mendoza, J.M.F. and Pigosso, D.C.A. 2023. How ready is the wind energy industry for the circular economy? Sustainable Production and Consumption 43, pp. 62–76, DOI: 10.1016/j.spc.2023.10.016.
 
30.
Mendoza et al. 2022 – Mendoza, J.M.F., Gallego-Schmid, A., Velenturf, AP.M., Jensen, P.D. and Ibarra, D. 2022. Circular economy business models and technology management strategies in the wind industry: Sustainability potential, industrial challenges and opportunities. Renewable and Sustainable Energy Reviews 163, DOI: 10.1016/j.rser.2022.112523.
 
31.
Miller, T. 2022. Seaports as Hubs for Wind Turbine Recycling. Maritime Sustainability 7(4), pp. 204–215.
 
32.
Mishnaevsky, L., Jr. 2021. Sustainable End-of-Life Management of Wind Turbine Blades: Overview of Current and Coming Solutions. Materials 14(5), DOI: 10.3390/ma14051124.
 
33.
Naqvi et al. 2018 – Naqvi, S.R., Mysore Prabhakara, H., Bramer, E.A., Dierkes, W., Akkerman, R. and Brem, G. 2018. A critical review on recycling of end-of-life carbon fibre/glass fibre reinforced composites waste using pyrolysis towards a circular economy. Resources Conservation and Recycling 136, pp. 118–129, DOI: 10.1016/j.resconrec.2018.04.013.
 
34.
Oei et al. 2020 – Oei, P.Y., Brauers, H. and Herpich, P. 2020. Lessons from Germany’s hard coal mining phase-out: policies and transition from 1950 to 2018. Climate Policy 20, pp. 963–979, DOI: 10.1080/14693062.2019.1688636.
 
35.
Oliveira et al. 2019 – Oliveira, T., Varum, C. and Botelho, A. 2019. Wind power and CO2 emissions in the Irish market. Energy Economics 80, pp. 48–58, DOI: 10.1016/j.eneco.2018.10.033.
 
36.
Paraschiv, S. and Paraschiv, L.S. 2020. Trends of carbon dioxide (CO2) emissions from fossil fuels combustion (coal, gas and oil) in the EU member states from 1960 to 2018. Energy Reports 6(8), pp. 237–242, DOI: 10.1016/j.egyr.2020.11.116.
 
37.
Qureshi, J. 2022. A review of recycling methods for fibre reinforced polymer composites. Sustainability 14(24), DOI: 10.3390/su142416855.
 
38.
Raoux et al. 2017 – Raoux, A., Tecchio, S., Pezy, J.-P., Lassalle, G., Degraer, S., Wilhelmsson, D., Cachera, M., Ernande, B., Le Guen, C., Haraldsson, M., Grangere, K., Le Loc’h, F., Dauvin, J.-C. and Niquil, N. 2017. Benthic and fish aggregation inside an offshore wind farm: Which effects on the trophic web functioning? Ecological Indicators 72, pp. 33–46, DOI: 10.1016/j.ecolind.2016.07.037.
 
39.
Ren et al. 2021 – Ren, Z., Verma, A.S., Li, Y., Teuwen, J.J.E. and Jiang, Z. 2021. Offshore wind turbine operations and maintenance: A state-of-the-art review. Renewable & Sustainable Energy Reviews 144, DOI: 10.1016/j.rser.2021.110886.
 
40.
Saigustia, C. and Robak, S. 2021. Review of Potential Energy Storage in Abandoned Mines in Poland. Energies 14(19), DOI: 10.3390/en14196272.
 
41.
Schreiber et al. 2019 – Schreiber, A., Marx, J. and Zapp, P. 2019. Comparative life cycle assessment of electricity generation by different wind turbine type. Journal of Cleaner Production 233, pp. 561–572, DOI: 10.1016/j.jclepro.2019.06.058.
 
42.
Smith, J. 2020. Steel Recycling in Wind Turbine Manufacturing. Journal of Sustainable Materials 15(3).
 
43.
Smith, R. 2020. Technological barriers in wind turbine recycling. Renewable Energy Review 25(4), pp. 412–425.
 
44.
Śniegocki et al. 2022 – Śniegocki, A., Wasilewski, M., Zygmunt, I. and Look, W. 2022. Just Transition in Poland: A Review of Public Policies to Assist Polish Coal Communities in Transition. Resources for the Future. [Online:] https://media.rff.org/document... [Accessed: 2025-07-02].
 
45.
Śniegocki, A. and Bukowski, M. 2021. Just Transition in Silesia: from coal-centric to coal-exit development pathways. WiseEuropa, pp. 41–50, DOI: 10.24352/UB.OVGU-2021-052.
 
46.
Taylor, S. 2021. Material Separation in Wind Turbine Blade Recycling. Advanced Materials Science.
 
47.
Tazi et al. 2019 – Tazi, N., Kim, J., Bouzidi, Y., Chatelet, E. and Liu, G. 2019. Waste and material flow analysis in the end-of-life wind energy system. Resources Conservation and Recycling 145, pp. 199–207, DOI: 10.1016/j.resconrec.2019.02.039.
 
48.
Telsnig, T. 2022. Mapping and analysis of current circular economy approaches in the wind energy sector. JRC Technical Raport, European Commission. [Online:] https://setis.ec.europa.eu/doc... [Accessed: 2025-06-20].
 
49.
Tiwari, A.K. 2011. Comparative performance of renewable and nonrenewable energy source on economic growth and CO2 emissions of Europe and Eurasian countries: A PVAR approach. Economics Bulletin. AccessEcon 31(3), pp. 2356–2372.
 
50.
Tyurkay et al. 2024 – Tyurkay, A., Kirkelund, G.M. and Lima, A.T.M. 2024. State-of-the-art circular economy practices for end-of-life wind turbine blades for use in the construction industry. Sustainable Production and Consumption 47, pp. 17–36, DOI: 10.1016/j.spc.2024.03.018.
 
51.
Vander Hoogerstraete et al. 2014 – Vander Hoogerstraete, T., Blanpain, B., Van Gerven, T. and Binnemans, K. 2014. From NdFeB magnets towards the rare-earth oxides: a recycling process consuming only oxalic acid. RSC Advances 4, pp. 64099–64111, DOI: 10.1039/c4ra13787f.
 
52.
White, N. 2020. Achieving sustainability in the wind energy sector. Technology and Innovation Journal 15(2), pp. 334–345.
 
53.
White, S. 2019. Contamination issues in wind turbine blade recycling. Environmental Science & Technology.
 
54.
Yang et al. 2017 – Yang, Y., Walton, A., Sheridan, R., Gueth, K., Gauss, R., Gutfleisch, O., Buchert, M., Steenari, B.-M., Van Gerven, T., Jones, P.T. and Binnemans, K. 2017. REE Recovery from End-of-Life NdFeB Permanent Magnet Scrap: A Critical Review. Journal of Sustainable Metallurgy 3, pp. 122–149, DOI: 10.1007/s40831-016-0090-4.
 
55.
Yousefi et al. 2019 – Yousefi, H., Abbaspour, A. and Seraj, H.R. 2019. Worldwide development of wind energy and CO2 emission reduction. Environmental Energy and Economic Research 3(1), pp. 1–9, DOI: 10.22097/eeer.2019.164295.1064.
 
56.
Zembrzuski et al. 2023 – Zembrzuski, J., Miśkiewicz, M., Sabik, A., Pyrzowski, Ł., Chróścielewski, J. and Wilde, K. 2023. Review of applications of used wind turbine blades for infrastructure construction (Przegląd aplikacji zużytych łopat turbin wiatrowych na potrzeby budownictwa infrastrukturalnego). Mosty – budowa, wzmacnianie, przebudowa, pp. 1–13, Poznań (in Polish).
 
eISSN:2720-569X
ISSN:1429-6675
Journals System - logo
Scroll to top