ORIGINAL PAPER
Prospects for the use of energy storage devices in the process of solar energy production
 
More details
Hide details
1
Department of Civil Energineering, Architecture, Energetics and Water Systems, Shushi University of Technology, Stepanakert, Armenia
 
 
Submission date: 2022-09-12
 
 
Final revision date: 2022-09-29
 
 
Acceptance date: 2022-10-16
 
 
Publication date: 2022-12-19
 
 
Corresponding author
Anzhela A. Barsegyan   

Shushi University of Technology, Armenia
 
 
Polityka Energetyczna – Energy Policy Journal 2022;25(4):135-148
 
KEYWORDS
TOPICS
ABSTRACT
Every developing country is beginning to rely on “green” energy in connection with environmental problems, including the global warming of our planet. It is expected that in the future, the production of electricity using the conversion of sunlight would take the dominant place in the energy infrastructure around the world. However, photovoltaic converters mainly generate intermittent energy due to natural factors (weather conditions) or the time of day in a given area. Therefore, the purpose of this study is to consider options for eliminating the interrupted nature of the operation of a solar installation through innovative additional applications. To achieve this goal, issues of the prospect of using energy storage devices and the choice of the most efficient and reliable of them are considered, as are the environmental friendliness of accumulators/batteries and the economic benefits of their use. The results of the analyses provide an understanding of the factors of using existing technologies with regard to their technical and economic aspects for use in solar energy. It was determined that the most common and predominant types of energy storage are lithium-ion and pumped storage plants. Such accumulation systems guarantee high efficiency and reliability in the operation of solar installation systems, depending on the scale of the solar station. Storage devices that are beginning to gain interest in research are also considered – storage devices made of ceramics of various kinds and thermochemical and liquid-air technologies. This study contributes to the development of an energy-storage system for renewable energy sources in the field of technical and economic optimization.
METADATA IN OTHER LANGUAGES:
Polish
Perspektywy wykorzystania magazynów energii w procesie produkcji energii słonecznej
akumulatory, baterie, metoda termochemiczna, odnawialne źródła energii, materiały magazynowe
Każdy kraj rozwijający się zaczyna polegać na „zielonej” energii w związku z problemami środowiskowymi, w tym globalnym ociepleniem naszej planety. Oczekuje się, że w przyszłości produkcja energii elektrycznej z wykorzystaniem konwersji światła słonecznego zajmie nadrzędne miejsce w infrastrukturze energetycznej na całym świecie. Jednak konwertery fotowoltaiczne generują energię głównie w sposób przerywany ze względu na czynniki naturalne (warunki pogodowe) lub porę dnia na danym terenie. Dlatego celem niniejszego opracowania jest rozważenie możliwości wyeliminowania przerywanej pracy instalacji solarnej poprzez innowacyjne aplikacje dodatkowe. Aby osiągnąć ten cel, rozważane są kwestie perspektywy wykorzystania magazynów energii oraz wyboru najbardziej wydajnych i niezawodnych z nich, a także akumulatorów/baterii w aspekcie ich oddziaływania na środowisko i korzyści ekonomicznych z ich użytkowania. Wyniki analiz pozwalają na zrozumienie czynników wykorzystania istniejących technologii, ich technicznych i ekonomicznych aspektów wykorzystania w energetyce słonecznej. Stwierdzono, że najpowszechniejszymi i dominującymi rodzajami magazynowania energii są elektrownie litowo-jonowe oraz elektrownie szczytowo-pompowe. Takie układy akumulacyjne gwarantują wysoką sprawność i niezawodność działania systemu instalacji solarnej, w zależności od skali stacji solarnej. Rozważane są również urządzenia magazynujące, które zaczynają coraz bardziej interesować badaczy – urządzenia magazynujące wykonane z różnego rodzaju ceramiki, w technologii termochemicznej i cieczowo-powietrznej. Niniejsze opracowanie przyczynia się do rozwoju systemu magazynowania energii dla odnawialnych źródeł energii w zakresie optymalizacji technicznej i ekonomicznej.
REFERENCES (25)
1.
Chen et al. 2022 – Chen, Y., Fan, H., Hou, D., Jia, Y., Zhang, A. and Wang, W. 2022. Bismuth sodium titanate-barium titanate-barium zirconate titanate relaxor ferroelectric ceramics with high recoverable energy storage density. Ceramics International 48(18), pp. 26894–26903, DOI: 10.1016/j.ceramint.2022.05.392.
 
2.
Cheng et al. 2019 – Cheng, Ch., Blakers, A., Stocks, M. and Lu, B. 2019. Pumped hydro energy storage and 100 % renewable electricity for East Asia. Global Energy Interconnection 2(5), pp. 386–392, DOI: 10.1016/j.gloei.2019.11.013.
 
3.
Da Silva Lima et al. 2021 – Da Silva Lima, L., Quartier, M., Buchmayr, A., Sanjuan-Delmás, D., Laget, H., Corbisier, D., Mertens, J. and Dewulf, J. 2021. Life cycle assessment of lithium-ion batteries and vanadium redox flow batteries-based renewable energy storage systems. Sustainable Energy Technologies and Assessments 46, DOI: 10.1016/j.seta.2021.101286.
 
4.
Danehkar, Sh. and Yousefi, H. 2022. A comprehensive overview on water-based energy storage systems for solar applications. Energy Report 8, pp. 8777–8797, DOI: 10.1016/j.egyr.2022.06.057.
 
5.
Gutsch, M. and Leker, J. 2022. Global warming potential of lithium-ion battery energy storage systems. Journal of Energy Storage 52, DOI: 10.1016/j.est.2022.105030.
 
6.
Huang et ak. 2022 – Huang, C., Xu, M., Huai, X. and Liu, Zh. 2022. Hierarchically porous calcium-based composites synthesized by eggshell membrane templating for thermochemical energy storage of concentrated solar power. Journal of Energy Storage 52, DOI: 10.1016/j.est.2022.104769.
 
7.
Liu et al. 2022 – Liu, T., Yang, J., Yang, Zh. and Duan, Y. 2022. Techno-economic feasibility of solar power plants considering PV/CSP with electrical/thermal energy storage system. Energy Conversion and Management 255, DOI: 10.1016/j.enconman.2022.115308.
 
8.
Luft, W. 1984. High-temperature solar thermal energy storage. International Journal of Solar Energy 3(1), pp. 25–40, DOI: 10.1080/01425918408914381.
 
9.
Martínez-Jaramillo et al. 2022 – Martínez-Jaramillo, J.E., van AckereaErik, A. and Larsen, R. 2022. Transitioning towards a 100% solar-hydro based generation: A system dynamic approach. Energy 239, DOI: 10.1016/j.energy.2021.122360.
 
10.
Mohamad et al. 2021 – Mohamad, F., The, J. and Lai, Ch.M. 2021. Optimum allocation of battery energy storage systems for power grid enhanced with solar energy. Energy 223, DOI: 10.1016/j.energy.2021.120105.
 
11.
Mrinal, K.A. and Debasis, D. 2021. Relaxor lead free Bismuth layered structured ferroelectric Cobalt & Nickel substituted SrBiNbTaO for energy storage application. Physica B: Condensed Matter 621, DOI: 10.1016/j.physb.2021.413318.
 
12.
Nabat et al. 2021 – Nabat, M.H., Soltani, M., Razmi, A.R., Nathwani, J. and Dusseault, M.B. 2021. Investigation of a green energy storage system based on liquid air energy storage (LAES) and high-temperature concentrated solar power (CSP): Energy, exergy, economic, and environmental (4E) assessments, along with a case study for San Diego, US. Sustainable Cities and Society 75, DOI: 10.1016/j.scs.2021.103305.
 
13.
Padula et al. 2021 – Padula, S., Tregambi, C., Solimene, R., Chirone, R., Troiano, M. and Salatino, P. 2021. A novel fluidized bed “thermochemical battery” for energy storage in concentrated solar thermal technologies. Energy Conversion and Management 236, DOI: 10.1016/j.enconman.2021.113994.
 
14.
Perkins, G. 2020. Perspectives and economics of combining biomass liquefaction with solar PV for energy storage and electricity production. Energy Sources 16, pp. 118–134, DOI: 10.1080/15567249.2020.1749910.
 
15.
Petrollese et al. 2022 – Petrollese, M., Cascetta, M., Tola, V., Cocco, D. and Cau, G. 2022. Pumped thermal energy storage systems integrated with a concentrating solar power section: Conceptual design and performance evaluation. Energy 247, DOI: 10.1016/j.energy.2022.123516.
 
16.
Qi et al. 2021 – Qi, N., Yin, Y., Dai, K., Wu, Ch., Wang, X. and You, Zh. 2021. Comprehensive optimized hybrid energy storage system for long-life solar-powered wireless sensor network nodes. Applied Energy 290, DOI: 10.1016/j.apenergy.2021.116780.
 
17.
Ruby-Jean C. and Farid M. 2022. Experimental investigation into cascade thermochemical energy storage system using SrCl-cement and zeolite-13X materials. Applied Energy 316, DOI: 10.1016/j.apenergy.2022.119145.
 
18.
Shukla, K.N. 2007. Thermal energy storage for solar power generation: State of the art. Heat Transfer Engineering 3(2), pp. 62–72, DOI: 10.1080/01457638108939581.
 
19.
Suleimenov et al. 2020 – Suleimenov, I., Egemberdieva, Z., Bakirov, A., Baipakbayeva, S., Kopishev, E. and Mun, G. 2020. Efficiency problem of renewable energetics systems in the context of «smart house» concept. E3S Web of Conferences 164, DOI: 10.1051/e3sconf/202016413002.
 
20.
Sun et al. 2020 – Sun, P., Wang, H., Bu, X., Chen, Zh., Du, J., Li, L., Wen, F., Bai, W., Zheng, P., Wu, W., Zheng, L. and Zhang, Y. 2020. Enhanced energy storage performance in bismuth layer-structured BaBiMeO (Me = Nb and Ta) relaxor ferroelectric ceramics. Ceramics International 46(10), pp. 15907–15914, DOI: 10.1016/j.ceramint.2020.03.139.
 
21.
Tamme et al. 2012 – Tamme, R., Laing, D., Steinmann, W.-D. and Bauer, T. 2012. Thermal energy storage and systems. Annual Review of Heat Transfer 15, pp. 131–177, DOI: 10.1615/AnnualRevHeatTransfer.2012004651.
 
22.
Wang et al. 2022 – Wang, G., Wang, T. and Han, W. 2022. Cyclic and standby behavior evaluations of liquid lead-bismuth eutectic thermal energy storage tank for concentrated solar power. Case Studies in Thermal Engineering 29, DOI: 10.1016/j.csite.2021.101729.
 
23.
Wang et al. 2022 – Wang, K., Yan, T., Li, R.K. and Pan, W.G. 2022. A review for Ca(OH)2/CaO thermochemical energy storage systems. Journal of Energy Storage 50, DOI: 10.1016/j.est.2022.104612.
 
24.
Wei et al. – Wei, J., Zhou, Ch., Mo, Zh., Zhang, X., Luo, Ch., Li, N. and Li, Zh. 2022. Thermodynamic analysis of a novel absorption thermochemical energy storage cycle with double compression coupled two-stage generation. Applied Thermal Engineering 215, DOI: 10.1016/j.applthermaleng.2022.118912.
 
25.
Yudhistira et al. 2022 – Yudhistira, R., Khatiwada, D. and Sanchez, F. 2022. A comparative life cycle assessment of lithium-ion and lead-acid batteries for grid energy storage. Journal of Cleaner Production 358, DOI: 10.1016/j.jclepro.2022.131999.
 
eISSN:2720-569X
ISSN:1429-6675
Journals System - logo
Scroll to top