ORIGINAL PAPER
Reducing emissions from hot blast stoves by configuring an automated control system
 
More details
Hide details
1
Department of Automation, Electrical and Robotic Systems, Technical University “Metinvest Polytechnic” LLC, Ukraine
 
2
Department of Power Energy, Dnipro University of Technology, Ukraine
 
3
Faculty of Management, AGH University of Krakow, Poland
 
4
Management and Administration Departmnent, Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, Ukraine, Ukraine
 
5
Management Department, AGH University of Krakow, Poland
 
 
Submission date: 2025-04-23
 
 
Final revision date: 2025-06-11
 
 
Acceptance date: 2025-06-12
 
 
Publication date: 2025-09-30
 
 
Corresponding author
Alla Polyanska   

Management and Administration Departmnent, Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, Ukraine, Ukraine
 
 
Polityka Energetyczna – Energy Policy Journal 2025;28(3):195-216
 
KEYWORDS
TOPICS
ABSTRACT
This research focuses on reducing harmful emissions during hot blast stove (HBS) operation by enhancing the automated control system for checkerwork heating. The primary sources of emissions, including nitrogen oxides (NOx), sulfur oxides (SOx), and carbon oxides (CO, CO2), generated during the combustion of blast furnace gas, are analyzed. The authors propose improving the automated control system by implementing feedback on fuel combustion quality, continuous monitoring of exhaust gas composition, and real-time assessment of the fuel’s calorific value. The system’s structure includes regulating combustion airflow, continuous monitoring of blast furnace gas calorific value, evaluating combustion efficiency through O2, CO, and CO2 content analysis in exhaust gases, and adjusting the combustion process according to the mode map, maintaining the dome temperature within 1,350–1,420°C to minimize NOx formation. These measures contribute to reducing NOx emissions, enhancing energy efficiency, and stabilizing the temperature regime. The proposed solutions offer a cost-effective approach to emission reduction and can be seamlessly integrated into existing metallurgical enterprise systems.
CONFLICT OF INTEREST
The Authors have no conflicts of interest to declare.
METADATA IN OTHER LANGUAGES:
Polish
Redukcja emisji z pieców nagrzewających powietrze poprzez konfigurację zautomatyzowanego systemu sterowania
piec nagrzewający powietrze (HBS), redukcja emisji, zautomatyzowany system sterowania, sprawność spalania, gaz wielkopiecowy
Przedmiotem niniejszych badań jest ograniczenie emisji szkodliwych substancji podczas eksploatacji pieców nagrzewających powietrze (HBS) poprzez udoskonalenie zautomatyzowanego systemu sterowania procesem nagrzewania konstrukcji rusztowej. Przeanalizowano główne źródła emisji powstające podczas spalania gazu wielkopiecowego, w tym tlenki azotu (NOx), tlenki siarki (SOx) oraz tlenki węgla (CO, CO2). Autorzy proponują modernizację systemu automatycznego sterowania poprzez wdrożenie sprzężenia zwrotnego dotyczącego jakości spalania paliwa, ciągły monitoring składu gazów spalinowych oraz bieżącą ocenę wartości opałowej paliwa. Struktura systemu obejmuje regulację przepływu powietrza do spalania, ciągły pomiar wartości opałowej gazu wielkopiecowego, ocenę sprawności spalania na podstawie analizy zawartości O2, CO i CO2 w spalinach oraz dostosowanie procesu spalania do mapy trybów pracy w celu utrzymania temperatury kopuły w zakresie 1350–1420°C, co sprzyja minimalizacji emisji NOx. Zastosowane rozwiązania przyczyniają się do redukcji emisji NOx, poprawy efektywności energetycznej oraz stabilizacji reżimu temperaturowego. Proponowane podejście stanowi opłacalną metodę ograniczania emisji i może zostać bezproblemowo zintegrowane z istniejącymi systemami przedsiębiorstw hutniczych.
REFERENCES (54)
1.
Béla, G. and Lipták, B.G. 2005. Instrument Engineers Handbook. Process Control and Optimization 2. CRC press 2, 2387.
 
2.
Cavaliere, P. 2019. Blast Furnace: Most Efficient Technologies for Greenhouse Emissions Abatement. Clean Ironmaking and Steelmaking Processes, pp. 167–273, DOI: 10.1007/978-3-030-21209-4_4.
 
3.
Chen et al. 2014 – Chen, C., Cheng, S. and Guo, X. 2014. Hazard Control of NOx in Hot Stove. Journal of Iron and Steel Research, International 21(3), pp. 306–311, DOI: 10.1016/S1006-706X(14)60047-9.
 
4.
Cuervo-Piñera et al. 2017 – Cuervo-Piñera, V., Cifrián-Riesgo, D., Nguyen, P.-D., Battaglia, V., Fantuzzi, M., Della Rocca, A., Ageno, M., Rensgard, A., Wang, C., Niska, J., Ekman, T., Rein, C. and Adler, W. 2017. Blast Furnace Gas Based Combustion Systems in Steel Reheating Furnaces. Energy Procedia 120, pp. 357–364, DOI: 10.1016/j.egypro.2017.07.215.
 
5.
Dychkovskyi, R.O. 2015. Determination of the rock subsidence spacing in the well underground coal gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 6, pp. 30–36.
 
6.
Dychkovskyi et al. 2024 – Dychkovskyi, R., Dyczko, A. and Borojević Šoštarić, S. 2024. Foreword: Physical and Chemical Geotechnologies – Innovations in Mining and Energy. E3S Web of Conferences 567, DOI: 10.1051/e3sconf/202456700001.
 
7.
Fedoreiko, V. 2024. Distributed energy generation based on jet-vortex bioheat generators. E3S Web of Conferences 567, DOI: 10.1051/e3sconf/202456701001.
 
8.
Fedoreiko et al. 2013 – Fedoreiko, V.S., Rutylo, M.I. and Iskerskyi, I.S. 2013. Improvement of energy performance of the electrotechnological complex for production of solid biofuels using neural controller. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 5, pp. 78–85.
 
9.
Fedoreiko et al. 2014 – Fedoreiko, V.S., Rutylo, M.I., Lutsyk, I.B. and Zahorodnii, R.I. 2014. Thermoelectric modules application in heat generator coherent systems. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 6, pp. 111–116.
 
10.
Fedoreiko et al. 2020 – Fedoreiko, V.S., Rutylo, M.I., Iskerskyi, I.S. and Zahorodnii, R.I. 2020. Optimization of heat production processes in the biofuel vortex combustion systems. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 6, pp. 83–88, DOI: 10.33271/nvngu/2020-6/083.
 
11.
Freund et al. 2021 – Freund, S., Abarr, M., McTigue, J.D., Frick, K.L., Mathur, A., Reindl, D., Van Asselt, A. and Casubolo, G. 2021. Thermal energy storage. Thermal, Mechanical, and Hybrid Chemical Energy Storage Systems, pp. 65–137, DOI: 10.1016/b978-0-12-819892-6.00003-4.
 
12.
Gardner, R.F. 2020. Boiler controls. Introduction to Plant Automation and Controls, pp. 193–241, DOI: 10.4324/9781003091134-7.
 
13.
Golovchenko et al. 2018 – Golovchenko, A., Pazynich, Y. and Potempa, M. 2018. Automated Monitoring of Physical Processes of Formation of Burden Material Surface and Gas Flow in Blast Furnace. Solid State Phenomena 277, pp. 54–65, DOI: 10.4028/www.scientific.net/ssp.277.54.
 
14.
Golovchenko et al. 2020 – Golovchenko, A., Dychkovskyi, R., Pazynich, Y., Edgar, C.C., Howaniec, N., Jura, B. and Smolinski, A. 2020. Some Aspects of the Control for the Radial Distribution of Burden Material and Gas Flow in the Blast Furnace. Energies 13(4), DOI: 10.3390/en13040923.
 
15.
Graaff et al. 2022 – Graaff, B., Weerdt, J. and Lytvynyuk, Y. 2022. NOx Emission From the Hot Blast System: Formation, Effects and the Possibilities for Its Reduction. AISTech 2022 Proceedings of the Iron and Steel Technology Conference, pp. 148–157, DOI: 10.33313/386/018.
 
16.
Hilsenrath et al. 1955 – Hilsenrath, J., Benedict, W.S., Fano, L., Hoge, H.J., Masa, J.F., Nuttall, R.L., Touloukian, Y.S. and Woolley, H.W. 1955. Circular of the Bureau of Standards no. 564: National Bureau of Standards. DOI: 10.6028/nbs.circ.564.
 
17.
Hres et al. 2022 – Hres, L.P., Yeromin, O.O., Karakash, Ye.O. and Radchenko, Yu.M. 2022. Ecological aspects of metallurgical technologies (1st part): teaching. manual. Ukrainian State University of Science and Technology 106.
 
18.
Koifman, A. and Simkin, A. 2019. Development and Software Implementation of the Hot Blast Stove Computer Model. Computer Modeling and Intelligent Systems 2353, pp. 440–454, DOI: 10.32782/cmis/2353-35.
 
19.
Koifman et al. 2020a – Koifman, O., Horobchenko, M., Klimov, Ye. and Dolia, D. 2020a. Application of the ACS Archive Database Mining in Managing of a Hot Blast Stoves Block. Science and production (23), pp. 328–337. [Online:] http://sap.pstu.edu/article/vi... [Accessed: 2025-04-15].
 
20.
Koifman et al. 2020b – Koifman, O., Oriekhov, M., Soldatov, D., Budur, V. and Holoiadov, A. 2020b. Control of Heating of the Hot Blast Stove Checkerwork with the Program for Calculation of Fuel Combustion. Science and production 23, pp. 338–346. [Online:] http://sap.pstu.edu/article/vi... [Accessed: 2025-04-15].
 
21.
Kosenko et al. 2024 – Kosenko, A., Khomenko, O., Kononenko, M., Myronova, I. and Pazynich, Y. 2024. Raises advance using borehole hydraulic technology. E3S Web of Conferences 567, DOI: 10.1051/e3sconf/202456701008.
 
22.
Koyfman et al. 2020 – Koyfman, O., Simkin, O. and Serdiuk, K. 2020. Intelligence analysis method of automation control system archive database for controlling hot blast stove block. Computer Modeling and Intelligent Systems 2608, pp. 102–117, DOI: 10.32782/cmis/2608-9.
 
23.
Koyfman et al. 2021 – Koyfman, O., Simkin, O., Klimov, Y. and Scherbakov, S. 2021. Using of Intelligence Analysis of Technological Parameters Database for Implementation of Control Subsystem of Hot Blast Stoves Block ACS. Computer Modeling and Intelligent Systems 2864, pp. 145–157, DOI: 10.32782/cmis/2864-13.
 
24.
Koyfman et al. 2025 – Koyfman, O., Rukhlov, A., Rukhlova, N., Miroshnychenko, V. and Polyanska, A. 2025. Optimization of Hot Blast Stove Emissions Through Automated Control System Configuration. Physical and Chemical Geotechnologies 9(1), DOI: 10.15407/pcgt.25.14.
 
25.
Levytska et al. 2021 – Levytska, O.H., Voytenko, Y.V. and Orishechok, A.O. 2021. Comparative assessment of gaseous fuel emission. Bulletin of NTU “KhPI”. Series: Сhemistry, chemical technology and ecology 1(5), pp. 83–91, DOI: 10.20998/2079-0821.2021.01.13.
 
26.
Lewicka, D. 2010. The impact of HRM on creating proinnovative work environment. International Journal of Innovation and Learning 7(4), pp. 430–449, DOI: 10.1504/ijil.2010.032932.
 
27.
Lewicka et al. 2023 – Lewicka, D., Zarębska, J., Batko, R., Tarczydło, B., Wożniak, M., Cichoń, D. and Pec, M. 2023. Circular Economy in the European Union. Circular Economy in the European Union: Organisational Practice and Future Directions in Germany, Poland and Spain, pp. 21–267, DOI: 10.4324/9781003411239.
 
28.
Liptak et al. 2018 – Liptak, B.G. and Eren, H. (eds.) 2018. Instrument Engineers’ Handbook, Standards in Process Control and Automation. CRC Press 3(8), pp. 1–8, DOI: 10.1201/9781315217093.
 
29.
Meng et al. 2023 – Meng, D., Wei, R., Long, H., Li, J., Zhang, F. and Wang, H. 2023. A novel method of combined desulfurization and heat utilization of low-temperature flue gas from hot blast stove for blast furnace: Laboratory research and industrial application. Fuel Processing Technology 252, DOI: 10.1016/j.fuproc.2023.107983.
 
30.
Nikolsky et al. 2020 – Nikolsky, V., Kuzyayev, I., Dychkovskyi, R., Alieksandrov, O., Yaris, V., Ptitsyn, S., Tikhaya, L., Howaniec, N., Bak, A., Siudyga, T., Jura, B., Cabana, E., Szymanek, A. and Smoliński, A. 2020. A Study of Heat Exchange Processes within the Channels of Disk Pulse Devices. Energies 13(13), DOI: 10.3390/en13133492.
 
31.
Nikolsky et al. 2022 – Nikolsky, V., Dychkovskyi, R., Cabana, E.C., Howaniec, N., Jura, B., Widera, K. and Smoliński, A. 2022. The Hydrodynamics of Translational−Rotational Motion of Incompressible Gas Flow within the Working Space of a Vortex Heat Generator. Energies 15(4), DOI: 10.3390/en15041431.
 
32.
Pivnyak et al. 2013 – Pivnyak, G., Zhezhelenko, I. and Papaika, Yu. 2013. Normalization of voltage quality as the way to ensure energy saving in power supply systems. Energy Efficiency Improvement of Geotechnical Systems – Proceedings of the International Forum on Energy Efficiency, pp. 11–18, DOI: 10.1201/b16355-3.
 
33.
Pivnyak et al. 2017 – Pivnyak, G.G., Zhezhelenko, I.V., Papaika, Yu.A. and Lysenko, O.H. 2017. Interharmonics in power supply systems. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 6, pp. 109–114.
 
34.
Polyanska et al. 2022 – Polyanska, A., Cichoń, D., Verbovska, L., Dudek, M., Sala, D. and Martynets, V. 2022. Waste management skills formation in modern conditions: the example of Ukraine. Financial and Credit Activity: Problems of Theory and Practice 4(45), pp. 322–334, DOI: 10.55643/fcaptp.4.45.2022.3814.
 
35.
Polyanska et al. 2024 – Polyanska, A., Pazynich, Y., Petinova, O., Nesterova, O., Mykytiuk, N. and Bodnar, G. 2024. Formation of a Culture of Frugal Energy Consumption in the Context of Social Security. The Journal of the International Committee for the History of Technology 29(2), pp. 60–87, DOI: 10.11590/icon.2024.2.03.
 
36.
Psyuk, V. and Polyanska, A. 2024. The usage of artificial intelligence in the activities of mining enterprises. E3S Web of Conferences 526, DOI: 10.1051/e3sconf/202452601016.
 
37.
Richert et al. 2024 – Richert, M., Dudek, M. and Sala, D. 2024. Surface Quality as a Factor Affecting the Functionality of Products Manufactured with Metal and 3D Printing Technologies. Materials 17(21), DOI: 10.3390/ma17215371.
 
38.
Rieger et al. 2015 – Rieger, J., Weiss, C. and Rummer, B. 2015. Modelling and control of pollutant formation in blast stoves. Journal of Cleaner Production 88, pp. 254–261, DOI: 10.1016/j.jclepro.2014.07.028.
 
39.
Seheda et al. 2024 – Seheda, M.S., Beshta, O.S., Gogolyuk, P.F., Blyznak, Yu.V., Dychkovskyi, R.D. and Smoliński, A. 2024. Mathematical model for the management of the wave processes in three-winding transformers with consideration of the main magnetic flux in mining industry. Journal of Sustainable Mining 23(1), pp. 20–39, DOI: 10.46873/2300-3960.1402.
 
40.
Shibata et al. 2001 – Shibata, T., Inayama, A., Maki, Y. and Ino, K. 2001. Latest Technologies on Process Control and Automation for Blast Furnace. IFAC Proceedings Volumes 34(18), pp. 321–326, DOI: 10.1016/S1474-6670(17)33227-5.
 
41.
Sobolev et al. 2020 – Sobolev, V., Bilan, N., Dychkovskyi, R., Caseres Cabana, E. and Smolinski, A. 2020. Reasons for breaking of chemical bonds of gas molecules during movement of explosion products in cracks formed in rock mass. International Journal of Mining Science and Technology 30(2), pp. 265–269, DOI: 10.1016/j.ijmst.2020.01.002.
 
42.
Sobolev et al. 2020 – Sobolev, V., Cabana, E.C., Howaniec, N., Dychkovskyi, R., Jura, B., Bąk, A., Iwaszenko, S. and Smoliński, A. 2020. Estimation of Dense Plasma Temperature Formed under Shock Wave Cumulation. Materials 13(21), DOI: 10.3390/ma13214923.
 
43.
Sobolev et al. 2025 – Sobolev, V., Gubenko, S., Khomenko, O., Kononenko, M., Dychkovskyi, R. and Smolinski, A. 2025. Physical and chemical conditions for the diamond formation. Diamond and Related Materials 151, DOI: 10.1016/j.diamond.2024.111792.
 
44.
Taran et al. 2023 – Taran, I., Оlzhabayeva, R., Oliskevych, M. and Danchuk, V. 2023. Structural optimization of multimodal routes for cargo delivery. Archives of Transport 67(3), pp. 49–70, DOI: 10.5604/01.3001.0053.7076.
 
45.
Technological standards... 2023 – Technological standards for permissible emissions of pollutants from equipment (installations) for the production of pig iron with a capacity exceeding 2.5 tons per hour 2023. Order of the Ministry of Environmental Protection and Natural Resources No. 174 dated March 27, 2023. [Online:] https://zakon.rada.gov.ua/laws... [Accessed: 2025-04-22].
 
46.
Wang, Y. and Dai, L. 2014. Application of the Blast Furnace Top Gas Instead of Nitrogen after Pressurizing. Advanced Materials Research 1044–1045, pp. 248–250, DOI: 10.4028/www.scientific.net/amr.1044-1045.248.
 
47.
Wei et al. 2021 – Wei, Q., Ge, L., Liu, S., Fu, Z., Cheng, S., Wang, L. and Liu, L. 2021. High air temperature and low nitrogen combustion technology of top burning catenary hot blast stove. Heibei Metall 2, pp. 64–68.
 
48.
Woźniak et al. 2024 – Woźniak, G., Bryś, W., Dychkovskyi, R., Dyczko, A., Nowak, T., Piekarska-Stachowiak, A., Trząski, L., Molenda, T. and Hutniczak, A. 2024. Modelling ecosystem services – a tool for assessing novel ecosystems functioning in the urban-industrial landscape. Journal of Water and Land Development 64, pp. 168–175, DOI: 10.24425/jwld.2024.151802.
 
49.
Wu et al. 2021 – Wu, Z., Li, D., Chen, H., Zhang, S. and Zhong, Q. 2021. Engineering application of desulfurization and denitrification comprehensive purification technology for activated coke. Environmental Progress & Sustainable Energy 40(5), DOI: 10.1002/ep.13642.
 
50.
Yang et al. 2023 – Yang, T., Guo, H., Liang, H. and Yan, B. 2023. Intelligent Combustion Control of the Hot Blast Stove: A Reinforcement Learning Approach. Processes 11(11), DOI: 10.3390/pr11113140.
 
51.
Zhang et al. 2014 – Zhang, F.M., Hu, Z.R. and Cheng, S.S. 2014. Study and Design on High Temperature Air Combustion of Hot Blast Stove. Applied Mechanics and Materials 496–500, pp. 1058–1062, DOI: 10.4028/www.scientific.net/amm.496-500.1058.
 
52.
Zhang et al. 2020 – Zhang, L., Xie, W. and Ren, Z. 2020. Combustion stability analysis for non-standard low-calorific gases: Blast furnace gas and coke oven gas. Fuel 278, DOI: 10.1016/j.fuel.2020.118216.
 
53.
Zhang et al. 2024 – Zhang, Q., Tang, Y. and Wang, L. 2024. Numerical Simulation Study on the Thermal Efficiency of Hot Blast Stoves. Processes 12(3), DOI: 10.3390/pr12030559.
 
54.
Zhu et al. 2024 – Zhu, X., Wang, P., Wang, S., Xv, S., Zhang, Y., Liu, H. and Zhao, D. 2024. Research on Flue Gas Purification Renovation of Blast Furnace Hot Blast Furnace in Steel Works Based on New Wet Desulphurization Technology. [In:] Environmental Governance, Ecological Remediation and Sustainable Development, pp. 813–821, DOI: 10.1007/978-3-031-52901-6_81.
 
eISSN:2720-569X
ISSN:1429-6675
Journals System - logo
Scroll to top