REVIEW PAPER
Thermal and mechanical energy storage as a chance for energy transformation in Poland
 
More details
Hide details
1
Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Kraków, Poland
 
2
Faculty of Mining and Geoengineering, AGH University of Science and Technology, Kraków, Poland
 
3
Przedsiębiorstwo Budowy Szybów SA, Tarnowskie Góry, Poland
 
4
KOMAG Institute of Mining Technology, Gliwice, Poland
 
 
Submission date: 2021-08-20
 
 
Final revision date: 2021-09-01
 
 
Acceptance date: 2021-09-01
 
 
Publication date: 2021-09-22
 
 
Corresponding author
Kinga Stecuła   

Przedsiębiorstwo Budowy Szybów S.A., Tarnowskie Góry 42-600, ul. Hutnicza 5-9, Poland
 
 
Polityka Energetyczna – Energy Policy Journal 2021;24(3):43-60
 
KEYWORDS
TOPICS
ABSTRACT
The objective of the European Green Deal is to change Europe into the world’s first climate-neutral continent by 2050. Therefore, European countries are developing technological solutions to increase the production of energy from renewable sources of energy. In order to universally implement energy production from renewable energy sources, it is necessary to solve the problem of energy storage. The authors discussed the issue of energy storage and renewable energy sources, reviewing applied thermal and mechanical energy storage solutions. They referred to the energy sector in Poland which is based mainly on mining activities. The method that was used in this paper is a review of thermal and mechanical energy storage solutions. In industrial practice, various solutions on energy storage are developed around the world. The authors reviewed those solutions and described the ones which currently function in practice. Hence, the authors presented the good practices of energy storage technology. Additionally, the authors conducted an analysis of statistical data on the energy sector in Poland. The authors presented data on prime energy production in Poland in 2004–2019. They described how the data has changed over time. Subsequently, they presented and interpreted data on renewable energy sources in Poland. They also showed the situation of Poland compared to other European countries in the context of the share of renewables in the final gross energy consumption.
METADATA IN OTHER LANGUAGES:
Polish
Magazynowanie energii cieplnej i mechanicznej jako szansa dla transformacji energetycznej w Polsce
magazynowanie energii, energia, odnawialne źródła energii, transformacja, energetyczna, Polska
Celem Europejskiego Zielonego Ładu jest przekształcenie Europy w pierwszy na świecie kontynent neutralny dla klimatu do 2050 roku. Z tego względu kraje europejskie opracowują rozwiązania technologiczne zwiększające produkcję energii z odnawialnych źródeł. W celu powszechnego wdrożenia produkcji energii z odnawialnych źródeł energii konieczne jest rozwiązanie problemu magazynowania energii. Autorzy omówili problematykę magazynowania energii i odnawialnych źródeł energii, dokonując przeglądu stosowanych rozwiązań magazynowania energii cieplnej i mechanicznej. Odnieśli się do sektora energetycznego w Polsce, który opiera się głównie na działalności górniczej. Metodą, która została zastosowana w pracy, jest przegląd rozwiązań magazynowania energii cieplnej i mechanicznej. W praktyce przemysłowej na całym świecie opracowywane są różne rozwiązania w zakresie magazynowania energii. Autorzy dokonali ich przeglądu i opisali te, które obecnie funkcjonują w praktyce. W artykule przedstawione zostały dobre praktyki techniki magazynowania energii. Dodatkowo autorzy przeprowadzili analizę danych statystycznych dotyczących sektora energetycznego w Polsce. Zaprezentowali dane dotyczące produkcji energii pierwotnej w Polsce w latach 2004–2019 oraz opisali, jak zmieniały się one w czasie. Następnie przedstawili i zinterpretowali dane dotyczące odnawialnych źródeł energii w Polsce, a także sytuację Polski na tle innych krajów europejskich w kontekście udziału OZE w końcowym zużyciu energii brutto.
REFERENCES (72)
1.
Abbas et al. 2020 – Abbas, Z., Chen, D., Li, Y., Yong, L. and Wang, R.Z. 2020. Experimental investigation of underground seasonal cold energy storage using borehole heat exchangers based on laboratory scale sandbox. Geothermics 87, 101837.
 
2.
Agencja Rynku Energii SA 2020. Primary Energy Balance in 2004–2019 (Bilans Energii Pierwotnej w latach 2004–2019). Warszawa (in Polish).
 
3.
Airly, 2020. Oddychaj Polsko. Raport o stanie powietrza. [Online] https://airly.org/pl/raport-ja... [Accessed: 2021-09-09].
 
4.
Bartoszek et al. 2021 – Bartoszek, S., Stankiewicz, K., Kost, G., Ćwikła, G. and Dyczko, A. 2021. Research on Ultrasonic Transducers to Accurately Determine Distances in a Coal Mine Conditions. Energies 14(9), 2532.
 
5.
Belu, R. 2019. Energy storage for electric grid and renewable energy application. In: Energy Storage, Grid Integration, Energy Economics, and the Environment. CRC Press Taylor & Francis Group, Boca Raton, FL, USA, pp. 29–33.
 
6.
Cabała et al. 2020 – Cabała, J., Warchulski R., Rozmus, D., Środek, D. and Szełęg, E. 2020. Pb-rich slags, minerals, and pollution resulted from a medieval Ag-Pb smelting and mining operation in the Silesian-Cracovian region (southern Poland). Minerals 10, p. 28.
 
7.
Cader et al. 2021a – Cader, J., Koneczna, R. and Olczak, P. 2021a. The Impact of Economic, Energy, and Environmental Factors on the Development of the Hydrogen Economy. Energies 14(16), p. 4811.
 
8.
Cader et al. 2021b – Cader, J., Olczak, P. and Koneczna, R. 2021b. Regional dependencies of interest in the “My Electricity” photovoltaic subsidy program in Poland. Polityka Energetyczna – Energy Policy Journal 24(2), pp. 97–116.
 
9.
Ciapała et al. 2021 – Ciapała, B., Jurasz, J., Janowski, M. and Kępińska, B. 2021. Climate factors influencing effective use of geothermal resources in SE Poland: the Lublin trough. Geotherm. Energy 9, p. 3.
 
10.
CSO 2020. Energy from renewable sources in 2019. Warsaw.
 
11.
Davies, R. 2020. Peak performance: could mountains create long-term energy storage? Power Technol. [Online] https://power.nridigital.com/f... [Accessed: 2021-04-20].
 
12.
Dychkovskyi et al. 2019 – Dychkovskyi, R., Tabachenko, M., Zhadiaieva, K. and Cabana, E. 2019. Some aspects of modern vision for geoenergy usage. E3S Web Conf. 123, 01010.
 
13.
Dyczko, A. and Malec, M. 2021. Innovative Concept of Production Support System for the {LW} Bogdanka Mine. {IOP} Conf. Ser. Mater. Sci. Eng. 1134, 12004.
 
14.
Energy Instrat 2021. No Title. [Online] https://www.energy.instrat.pl [Accessed: 2021-03-23].
 
15.
Euractive 2021. EU’s draft renewables law confirms 38–40% target for 2030. [Online] https://www.euractiv.com/secti... [Accessed: 2021-05-18].
 
16.
European Commission 2019. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. The European Green Deal. Brussels.
 
17.
European Environmental Agency 2021. Share of energy consumption from renewable sources in Europe. EEA. [Online] https://www.eea.europa.eu/data... [Accessed: 2021-06-21].
 
18.
Frankowski, J. 2020. Attention: Smog alert! Citizen engagement for clean air and its consequences for fuel poverty in Poland. Energy Build. 207, 109525.
 
19.
Gawlik, L. ed. 2013. Coal for the Polish energy sector in the perspective of 2050 – scenario analyzes (Węgiel dla polskiej energetyki w perspektywie 2050 roku – analizy scenariuszowe). Katowice: Górnicza Izba Przemysłowo-Handlowa (in Polish).
 
20.
Graboś, A. and Żymanowska-Kumon, S. 2014. Counteracting low emissions in dense residential areas (Przeciwdziałanie niskiej emisji na terenach zwartej zabudowy mieszkalnej) [ed.] R. Sadlok. Bochnia: HELIOS (in Polish).
 
21.
Gravitricity 2020. Gravitricity. [Online] https://gravitricity.com/ [Accessed: 2021-07-27].
 
22.
Holder, M. 2020. Gravitricity to pilot £1m gravity-based energy storage system in Edinburgh. Bus. Green. [Online] https://www.businessgreen.com/... [Accessed: 2021-07-22].
 
23.
Hunt et al. 2020 – Hunt, J.D., Zakeri, B., Falchetta, G., Nascimento, A., Wada, Y. and Riahi, K. 2020. Mountain Gravity Energy Storage: A new solution for closing the gap between existing short- and long-term storage technologies. Energy 190, 116419.
 
24.
Hussein et al. 2004 – Hussein, H.M.S., Ahmad, G.E. and El-Ghetany, H.H. 2004. Performance evaluation of photovoltaic modules at different tilt angles and orientations. Energy Convers. Manag. 45, pp. 2441–2452.
 
25.
Kadar, P. 2014. Pros and Cons of the Renewable Energy Application. Acta Polytechnica Hungarica 11(4), pp. 211–224.
 
26.
Kamiński, P. 2021a. A New Method of Regulation of Loads Acting on the Shaft Lining in Sections Located in the Salt Rock Mass. Energies 14(1), p. 0042.
 
27.
Kamiński, P. 2021b. Development of New Mean of Individual Transport for Application in Underground Coal Mines. Energies 14(7), p. 2022.
 
28.
Kamiński et al. 2021 – Kamiński, P., Dyczko, A. and Prostański, D. 2021. Virtual Simulations of a New Construction of the Artificial Shaft Bottom (Shaft Safety Platform) for Use in Mine Shafts. Energies 14(8), 2110.
 
29.
Kaszyński et al. 2019 – Kaszyński, P., Komorowska, A. and Kamiński, J. 2019. Regional distribution of hard coal consumption in the power sector under selected forecasts of EUA prices. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 35(4), pp. 113–134.
 
30.
Klojzy-Karczmarczyk, B. and Mazurek, J. 2009. Local government responsibilities in the process of reducing low emission (Zadania samorządów lokalnych w procesie likwidacji niskiej emisji). Polityka Energetyczna 12(2.2), pp. 277–284 (in Polish).
 
31.
Komorowska et al. 2020 – Komorowska, A., Benalcazar, P., Kaszyński, P. and Kamiński, J. 2020. Economic consequences of a capacity market implementation: The case of Poland. Energy Policy 144, 111683.
 
32.
Kopacz et al. 2020 – Kopacz, M., Kulpa, J., Galica, D. and Olczak, P. 2020. The influence of variability models for selected geological parameters on the resource base and economic efficiency measures – Example of coking coal deposit. Resour. Policy 68, 101711.
 
33.
Koval et al. 2019 – Koval, V., Sribna, Y., Mykolenko, O. and Vdovenko, N. 2019. Environmentalconcept of energy security solutions of local communities based on energy logistics. [In:] 19th International Multidisciplinary Scientific GeoConference SGEM 2019, International Multidisciplinary Scientific GeoConference-SGEM. STEF92 Technology, 51 Alexander Malinov blvd, Sofia, 1712, Bulgaria, pp. 283–290.
 
34.
Kryzia, D. and Pepłowska, M. 2019. The impact of measures aimed at reducing low-stack emission in Poland on the energy efficiency and household emission of pollutants. Polityka Energetyczna – Energy Policy Journal 22(2), pp. 121–132.
 
35.
Kubiński, K. and Szabłowski, Ł. 2020. Dynamic model of solar heating plant with seasonal thermal energy storage. Renew. Energy 145, pp. 2025–2033.
 
36.
Kwestarz, M. 2016. Thermal energy storage – types of energy storage (Magazynowanie ciepła – rodzaje magazynów). Czysta Energ. 12, pp. 29–35 (in Polish).
 
37.
Mangold, D. and Deschaintre, L. 2016. Seasonal thermal energy storage. Report on state of the art and necessary further R+D. [Online] http://task45.iea-shc.org/data... {accessed: 2021.09.09].
 
38.
Matuszewska et al. 2017 – Matuszewska, D., Kuta, M. and Górski, J. 2017. Cogeneration – Development and prospect in Polish energy sector. E3S Web Conf. 14, p. 01021.
 
39.
Matuszewska et al. 2020 – Matuszewska, D., Kuta, M. and Olczak, P. 2020. Techno-Economic Assessment of Mobilized Thermal Energy Storage System Using Geothermal Source in Polish Conditions. Energies 13(13), p. 3404.
 
40.
Matuszewska, D. and Olczak, P. 2020. Evaluation of Using Gas Turbine to Increase Efficiency of the Organic Rankine Cycle (ORC). Energies 13(6), p. 1499.
 
41.
Mikhno et al. 2021 – Mikhno, I., Koval, V., Shvets, G., Garmatiuk, O. and Tamosiuniene, R. 2021. Green Economy in Sustainable Development and Improvement of Resource Efficiency. Cent. Eur. Bus. Rev. 10, pp. 99–113.
 
42.
Mirowski et al. 2020 – Mirowski, T., Jach-Nocoń, M., Jelonek, I. and Nocoń, A. 2020. The new meaning of solid fuels from lignocellulosic biomass used in low-emission automatic pellet boilers. Polityka Energetyczna – Energy Policy Journal 23(1), pp. 75–86.
 
43.
Mokrzycki, E. and Gawlik, L. 2013. Strategy for the security of energy resources in Poland-renewable energy sources. [In:] Environmental Engineering IV.
 
44.
Olczak, P. and Komorowska, A. 2021. An adjustable mounting rack or an additional PV panel? Cost and environmental analysis of a photovoltaic installation on a household: A case study in Poland. Sustain. Energy Technol. Assessments 47, 101496.
 
45.
Olczak et al. 2020 – Olczak, P., Matuszewska, D. and Kryzia, D. 2020. ”Mój Prąd” as an example of the photovoltaic one off grant program in Poland. Polityka Energetyczna – Energy Policy Journal 23(2), pp. 123–138.
 
46.
Olczak et al. 2021a – Olczak, P., Jaśko, P., Kryzia, D., Matuszewska, D., Fyk, M.I. and Dyczko, A. 2021a. Analyses of duck curve phenomena potential in polish PV prosumer households’ installations. Energy Reports 7, pp. 4609–4622.
 
47.
Olczak et al. 2021b – Olczak, P., Kryzia, D., Matuszewska, D. and Kuta, M. 2021b. “My Electricity” Program Effectiveness Supporting the Development of PV Installation in Poland. Energies 14(1), p. 0231.
 
48.
Olczak et al. 2021c – Olczak, P., Olek, M., Matuszewska, D., Dyczko, A. and Mania, T. 2021c. Monofacial and Bifacial Micro PV Installation as Element of Energy Transition – The Case of Poland. Energies 14(2), p. 0499.
 
49.
Orzeł, B. 2020. Non-financial Value Creation Due to Non-financial Data Reporting Quality. Zesz. Nauk. Organ. i Zarządzanie 148, pp. 605–617.
 
50.
Palka, D. and Stecuła, K. 2019. Concept of technology assessment in coal mining. IOP Conf. Ser. Earth Environ. Sci. 261, 012038.
 
51.
Państwowy Instytut Geologiczny 2020. Balance of mineral deposits resources in Poland (Bilans zasobów złóż kopalin w Polsce). Warszawa: Państwowy Instytut Geologiczny (in Polish).
 
52.
Paszkowski, W. and Loska, A. 2017. The use of data mining methods for the psychoacoustic assessment of noise in urban environment. Int. Multidiscip. Sci. GeoConference SGEM 17, pp. 1059–1066.
 
53.
Pedchenko et al. 2018 – Pedchenko, M., Pedchenko, L., Nesterenko, T. and Dyczko, A. 2018. Technological Solutions for the Realization of NGH-Technology for Gas Transportation and Storage in Gas Hydrate Form. Solid State Phenom. 277, pp. 123–136.
 
54.
Possemiers, M. 2014. Aquifer Thermal Energy Storage under different hydrochemical and hydrogeological conditions. [Online] https://limo.libis.be/primo-ex... [Accessed: 2021-09-09].
 
55.
Rafał, K. and Grabowski, P. 2021. Energy storage (Magazynowanie energii). Academia – Mag. Pol. Akad. Nauk, DOI: 10.24425/academiaPAN.2021.136844 34–40 (in Polish).
 
56.
REHAU 2011. Underground Thermal Energy Storage. Improving efficiency through seasonal heat storage. Canada.
 
57.
Schmidt et al. 2018 – Schmidt, T., Pauschinger, T., Sørensen, P.A., Snijders, A., Djebbar, R., Boulter, R. and Thornton, J. 2018. Design Aspects for Large-scale Pit and Aquifer Thermal Energy Storage for District Heating and Cooling. Energy Procedia 149, pp. 585–594.
 
58.
Soliński, J. 2004. Energy sector – world and Poland. Development 1971–2000, prospects to 2030.
 
59.
Statistics Poland 2019. Energia ze źródeł odnawialnych w 2018 roku. Informacje sygnalne.
 
60.
Statistics Poland 2020a. Energy 2020. Warszawa.
 
61.
Statistics Poland 2020b. Energia ze źródeł odnawialnych w 2019 roku. Informacje sygnalne.
 
62.
Stecuła, K. 2018. Decision-making Dilemmas in Mining Enterprise and Environmental Issues, i. e. Green Thinking in Mining. 18th Int. Multidiscip. Sci. Geoconference SGEM 2018, pp. 357–364.
 
63.
Stecuła, K. and Brodny, J. 2017a. Perspectives on renewable energy development as alternative to conventional energy in Poland. [In:] International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, pp. 717–724.
 
64.
Stecuła, K. and Brodny, J. 2017b. Generating knowledge about the downtime of the machines in the example of mining enterprise. [In:] International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, pp. 359–366.
 
65.
Stecuła, K. and Brodny, J. 2018a. Role and meaning of coal mining in Poland. [In:] International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM. pp. 801–808.
 
66.
Stecuła, K. and Brodny, J. 2018b. Decision-making possibilities in the field of excavated material quality shaping in terms of environmental protection, I. E. how to be greener in mining. [In:] International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, pp. 243–250.
 
67.
Stecuła, K. and Tutak, M. 2018. Causes and effects of low-stack emission in selected regions of Poland. [In:] International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, pp. 357–364.
 
68.
Steinmann et al. 2019 – Steinmann, W.-D., Bauer, D., Jockenhöfer, H. and Johnson, M. 2019. Pumped thermal energy storage (PTES) as smart sector-coupling technology for heat and electricity. Energy 183, pp. 185–190.
 
69.
Woźniak, J. and Pactwa, K. 2018. Responsible Mining – The Impact of the Mining Industry in Poland on the Quality of Atmospheric Air. Sustainability 10, p. 1184.
 
70.
Wróbel et al. 2019 – Wróbel, J., Sołtysik, M. and Rogus, R. 2019. Selected elements of the Neighborly Exchange of Energy – Profitability evaluation of the functional model. Polityka Energetyczna – Energy Policy Journal 22(4), pp. 53–64.
 
71.
Wyrwicki, G. 2004. Thermogravimetric analysis – unappreciated method for determination of rock type and quality (Analiza termograwimetryczna – niedoceniana metoda określania rodzaju i jakości kopaliny). Górnictwo Odkryw. 46, pp.120–125 (in Polish).
 
72.
Żelazna et al. 2020 – Żelazna, A., Gołębiowska, J., Zdyb, A. and Pawłowski, A. 2020. A hybrid vs. on-grid photovoltaic system: Multicriteria analysis of environmental, economic, and technical aspects in life cycle perspective. Energies 13(15), p. 3978.
 
eISSN:2720-569X
ISSN:1429-6675
Journals System - logo
Scroll to top