ORIGINAL PAPER
Willingness to pay for the renewable energy sources of the residents of Kraków and their perception of the actions aimed at reducing the level of environmental pollution
More details
Hide details
1
Department of Public Economics, Cracow University of Economics, Poland
Submission date: 2021-03-11
Final revision date: 2021-04-10
Acceptance date: 2021-04-15
Publication date: 2021-06-21
Corresponding author
Łukasz Mamica
Department of Public Economics, Cracow University of Economics, Rakowicka 27, 31-510, Kraków, Poland
Polityka Energetyczna – Energy Policy Journal 2021;24(2):117-136
KEYWORDS
TOPICS
ABSTRACT
Implementing energy transformation through the goal of the more extensive use of renewable energy sources is one of the key tasks on the road to slowing adverse climate change. The pace of this transformation is dependent on both the political decisions and social support for the implemented changes. The indicator of the aforementioned support is the Willingness to Pay for Renewable Energy Sources (WTP) declared by residents. The increase of the WTP value influences a more rapid and wider substitution of non-renewable energy sources with renewable energy sources. The goal of this paper is to analyze the determinants of the WTP indicator on the example of residents of Kraków and their perception of the actions aimed at reducing the level of environmental pollution. Research is based on a survey performed on a representative sample of 393 residents of Kraków, Poland. In the surveyed group of residents, the average monthly willingness to pay more for renewable energy was PLN 83.7, i.e. approx. USD 21.47. The WTP differs in a statistically significant manner depending on the type of housing in which the respondents reside. On average, the residents of detached houses or terraced housing declared the WTP value twice as high as the WTP value declared by the residents of apartment buildings or tenement houses.
METADATA IN OTHER LANGUAGES:
Polish
Skłonność do płacenia za energię ze źródeł odnawialnych deklarowana przez mieszkańców Krakowa w perspektywie działań zmierzających do obniżenia poziomu zanieczyszczenia środowiska
skłonność do zapłaty za energię odnawialną, transformacja energetyczna, postawy ekologiczne, polityka energetyczna
Przeprowadzenie transformacji energetycznej w kierunku szerszego wykorzystywania źródeł odnawialnych jest jednym z kluczowych zadań na drodze do zahamowania negatywnych zmian klimatycznych. Tempo tego procesu zależy zarówno od decyzji politycznych, jak i poparcia społecznego dla wdrażanych zmian. Wskaźnikiem wspomnianego poparcia jest skłonność do płacenia za energię ze źródeł odnawialnych (ang. Willingness to pay for Renewable Energy Sources WTP), deklarowana przez mieszkańców. Celem niniejszego artykułu jest analiza determinant tej skłonności na przykładzie mieszkańców Krakowa oraz postrzegania przez nich działań redukujących poziom zanieczyszczeń środowiska w oparciu o wyniki badań ankietowych przeprowadzonych na reprezentatywnej grupie 393 mieszkańców tego miasta. Badania uwzględniają opinie dotyczące wprowadzenia od 1 września 2019 roku pionierskiego w skali Polski zakazu palenia paliwami stałymi. W analizowanej grupie mieszkańców średnia miesięczna skłonność do płacenia więcej za energię pochodzącą ze źródeł odnawialnych wyniosła 83,7 zł, tj. ok. 21,47 USD. WTP różni się od siebie w statystyczne istotny sposób w zależności od typu zabudowy, w jakiej mieszkają ankietowani. Mieszkańcy domów jednorodzinnych lub domów w zabudowie szeregowej deklarują średnio ponad dwukrotnie wyższą wartość WTP niż mieszkańcy bloków i kamienic (odpowiednio 152,47 zł, tj. 39,11 USD w stosunku do 62,11 zł, tj. 15,93 USD). Przeprowadzone badania pokazały również, że wartość WTP jest w sposób statystycznie istotny determinowana przez fakt wykorzystywania urządzeń energooszczędnych, i wyższa w grupie osób deklarujących ich stosowanie.
REFERENCES (67)
1.
Bartnicki, G. and Nowak, B. 2020. The gas fuel market in Poland and the costs of final heat generated in a local boiler house. Polityka Energetyczna – Energy Policy Journal 23(2), pp. 105–122, DOI: 10.33223/epj/123218.
2.
Batley et al. 2001 – Batley, S.L., Colbourne, D., Fleming, P.D. and Urwin, P. 2001. Citizen versus consumer: challenges in the UK green power market. Energy Policy 29(6), pp. 479–487, DOI: 10.1016/S0301-4215(00)00142-7.
3.
Bigerna, S. and Polinori, P. 2014. Italian households’ willingness to pay for green electricity. Renewable and Sustainable Energy Reviews 34, pp. 110–121, DOI: 10.1016/j.rser.2014.03.002.
4.
Biresselioglu et al. 2020 – Biresselioglu, M.E., Demir, M.H., Demirbag, K.M. and Solak, B. 2020. Individuals, collectives, and energy transition: Analysing the motivators and barriers of European decarbonisation. Energy Research & Social Science 66, p. 101493, DOI: 10.1016/j.erss.2020.101493.
5.
Busch, H. and McCormick, K. 2014. Local power: exploring the motivations of mayors and key success factors for local municipalities to go 100% renewable energy. Energ Sustain Soc 4(1), DOI: 10.1186/2192-0567-4-5.
6.
Cai et al. 2019 – Cai, S., Long, X., Li, L., Liang, H., Wang, Q. and Ding, X. 2019. Determinants of intention and behavior of low carbon commuting through bicycle-sharing in China. Journal of Cleaner Production 212, pp. 602–609, DOI: 10.1016/j.jclepro.2018.12.072.
7.
Comello et al. 2018 – Comello, S., Reichelstein, S. and Sahoo, A. 2018. The road ahead for solar PV power. Renewable and Sustainable Energy Reviews 92, pp. 744–756, DOI: 10.1016/J.RSER.2018.04.098.
8.
Dogan, E. and Muhammad, I. 2019. Willingness to pay for renewable electricity: A contingent valuation study in Turkey. The Electricity Journal 32(10), p. 106677, DOI: 10.1016/j.tej.2019.106677.
9.
Dziok, T. and Penkała, K. 2020. The possibility of reducing emissions from households by using coal briquettes. Polityka Energetyczna – Energy Policy Journal 23(3), pp. 55–70, DOI: 10.33223/epj/126438.
10.
EIA 2019. International Energy Outlook 2019. Energy Information Administration. Washington, DC, USA.
11.
Ek, K. 2005. Public and private attitudes towards “green” electricity: the case of Swedish wind power. Energy Policy 33(13), pp. 1677–1689, DOI: 10.1016/j.enpol.2004.02.005.
12.
Emam et al. 2020 – Emam, S., Grebel, T. and Tudor, A.-D. 2020. Do we need disasters to adopt more environmental policies? Energ Sustain Soc 10(1). DOI: 10.1186/s13705-020-00256-3.
13.
Ertör-Akyazı et al. 2012 – Ertör-Akyazı, P., Adaman, F., Özkaynak, B. and Zenginobuz, Ü. 2012. Citizens’ preferences on nuclear and renewable energy sources: Evidence from Turkey. Energy Policy 47, pp. 309–320, DOI: 10.1016/j.enpol.2012.04.072.
14.
Guo et al. 2014 – Guo, X., Liu, H., Mao, X., Jin, J., Chen, D. and Cheng, S. 2014. Willingness to pay for renewable electricity: A contingent valuation study in Beijing, China. Energy Policy 68, pp. 340–347, DOI: 10.1016/j.enpol.2013.11.032.
15.
Halkos, G.E. and Gkampoura, E.-C. 2020. Reviewing Usage, Potentials, and Limitations of Renewable Energy Sources. Energies 13(11), p. 2906, DOI: 10.3390/en13112906.
16.
Han et al. 2020 – Han, M.S., Biying, Y., Cudjoe, D. and Yuan, Q. 2020. Investigating willingness-to-pay to support solar energy research and development in Myanmar. Energy Policy 146, p. 111820, DOI: 10.1016/j.enpol.2020.111820.
17.
Han, M.S. and Cudjoe, D. 2020. Determinants of energy-saving behavior of urban residents: Evidence from Myanmar. Energy Policy 140, p. 111405, DOI: 10.1016/j.enpol.2020.111405.
18.
Hanemann et al. 2011 – Hanemann, M., Labandeira, X. and Loureiro, M.L. 2011. Climate change, energy and social preferences on policies: exploratory evidence for Spain. Clim. Res. 48(2), pp. 343–348, DOI: 10.3354/cr00994.
19.
Hast et al. 2015 – Hast, A., Alimohammadisagvand, B. and Syri, S. 2015. Consumer attitudes towards renewable energy in China – The case of Shanghai. Sustainable Cities and Society 17, pp. 69–79, DOI: 10.1016/j.scs.2015.04.003.
20.
Hecht, A.D. and Sanders Iii, W.H. 2007. How EPA research, policies, and programs can advance urban sustainability. Sustainability: Science, Practice and Policy 3(2), pp. 37–47, DOI: 10.1080/15487733.2007.11908001.
21.
Hertzberg et al. 2017 – Hertzberg, M., Siddons, A. and Schreuder, H. 2017. Role of greenhouse gases in climate change. Energy & Environment 28(4), pp. 530–539.
22.
Hess, D.J. and Gentry, H. 2019. 100% renewable energy policies in U.S. cities: strategies, recommendations, and implementation challenges. Sustainability: Science, Practice and Policy 15(1), pp. 45–61, DOI: 10.1080/15487733.2019.1665841.
23.
IPCC 2014. Summary for Policymakers. [In:] Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds) (Ed.): Climate change 2014. Mitigation of climate change: IPCC Working Group III contribution to AR5. Potsdam, Germany: IPCC Working Group III, pp. 1–30.
24.
Jin et al. 2019 – Jin, J., Wan, X., Lin, Y., Kuang, F. and Ning, J. 2019. Public willingness to pay for the research and development of solar energy in Beijing, China. Energy Policy 134, p. 110962, DOI: 10.1016/j.enpol.2019.110962.
25.
Kaenzig et al. 2013 – Kaenzig, J., Heinzle, S.L. and Wüstenhagen, R. 2013. Whatever the customer wants, the customer gets? Exploring the gap between consumer preferences and default electricity products in Germany. Energy Policy 53, pp. 311–322, DOI: 10.1016/j.enpol.2012.10.061.
26.
Kashintseva et al. 2018 – Kashintseva, V., Strielkowski, W., Streimikis, J. and Veynbender, T. 2018. Consumer Attitudes towards Industrial CO2 Capture and Storage Products and Technologies. Energies 11(10), p. 2787, DOI: 10.3390/en11102787.
27.
Kim et al. 2020 – Kim, S.-M., Kim, J.-H. and Yoo, S.-H. 2020. Households’ Willingness to Pay for Substituting Natural Gas with Renewable Methane: A Contingent Valuation Experiment in South Korea. Energies 13(12), p. 3082, DOI: 10.3390/en13123082.
28.
Kostakis, I. and Sardianou, E. 2012. Which factors affect the willingness of tourists to pay for renewable energy? Renewable Energy 38(1), pp. 169–172, DOI: 10.1016/j.renene.2011.07.022.
29.
Kotchen, M.J. 2006. Green Markets and Private Provision of Public Goods. Journal of Political Economy 114(4), pp. 816–834. DOI: 10.1086/506337.
30.
Kunecki et al. 2020 – Kunecki, P., Franus, W. and Wdowin, M. 2020. Statistical study and physicochemical characterization of particulate matter in the context of Kraków, Poland. Atmospheric Pollution Research 11(3), pp. 520–530, DOI: 10.1016/j.apr.2019.12.001.
31.
Levitan et al. 2014 – Levitan, O., Dinamarca, J., Hochman, G. and Falkowski, P.G. 2014. Diatoms: a fossil fuel of the future. Trends in Biotechnology 32(3), pp. 117–124, DOI: 10.1016/j.tibtech.2014.01.004.
32.
Li et al. 2009 – Li, H., Jenkins-Smith, H.C., Silva, C.L., Berrens, R.P. and Herron, K.G. 2009. Public support for reducing US reliance on fossil fuels: Investigating household willingness-to-pay for energy research and development. Ecological Economics 68(3), pp. 731–742, DOI: 10.1016/j.ecolecon.2008.06.005.
33.
Li et al. 2020 – Li, L., Long, X., Laubayeva, A., Cai, X. and Zhu, B. 2020. Behavioral intention of environmentally friendly agricultural food: the role of policy, perceived value, subjective norm. Environmental science and pollution research international 27(15), pp. 18949–18961, DOI: 10.1007/s11356-020-08261-x.
34.
Lim et al. 2017 – Lim, S.-Y., Kim, H.-J. and Yoo, S.-H. 2017. Public’s willingness to pay a premium for bioethanol in Korea: A contingent valuation study. Energy Policy 101, pp. 20–27, DOI: 10.1016/j.enpol.2016.11.010.
35.
Lin et al. 2019 – Lin, R., Liu, Y., Man, Y. and Ren, J. 2019. Towards a sustainable distributed energy system in China: decision-making for strategies and policy implications. Energ Sustain Soc 9(1), DOI: 10.1186/s13705-019-0237-9.
36.
Lu, W.-C. 2017. Greenhouse Gas Emissions, Energy Consumption and Economic Growth: A Panel Cointegration Analysis for 16 Asian Countries. In International journal of environmental research and public health 14(11). DOI: 10.3390/ijerph14111436.
37.
Ma et al. 2015 – Ma, C., Rogers, A.A., Kragt, M.E., Zhang, F., Polyakov, M., Gibson, F. et al. 2015. Consumers’ willingness to pay for renewable energy: A meta-regression analysis. Resource and Energy Economics 42, pp. 93–109, DOI: 10.1016/j.reseneeco.2015.07.003.
38.
Mamica, Ł. 2018. Public Policy and the Neo-Weberian State. [In:] Stanisław Mazur, Piotr Kopycinski (Eds.): Public policy and the neo-Weberian state. Abingdon, Oxon, New York, NY: Routledge, an imprint of the Taylor & Francis Group (Routledge frontiers of political economy, 235), pp. 110––119.
39.
Mamica, Ł. ed. 2021. Outsourcing in European emerging economies. Territorial embeddedness and global business services. Abingdon, Oxon, New York, NY: Routledge (Routledge advances in regional economics, science and policy).
40.
Marra et al. 2012 – Marra, A.E., Jensen, K.L., Clark, C.D., English, B.C. and Toliver, D.K. 2012. Greenhouse gas emission reductions as a motivator of e85 purchases across market segments. Energ. Sustain. Soc. 2(1), DOI: 10.1186/2192-0567-2-21.
41.
Morita, T. and Managi, S. 2015. Consumers’ willingness to pay for electricity after the Great East Japan Earthquake. Economic Analysis and Policy 48, pp. 82–105, DOI: 10.1016/j.eap.2015.09.004.
42.
Moscovici et al. 2015 – Moscovici, D., Dilworth, R., Mead, J. and Zhao, S. 2015. Can sustainability plans make sustainable cities? The ecological footprint implications of renewable energy within Philadelphia’s Greenworks Plan. Sustainability: Science, Practice and Policy 11(1), pp. 32–43, DOI: 10.1080/15487733.2015.11908137.
43.
Navrud, S. and Bråten, K.G. 2007. Consumers’ preferences for green and brown electricity: a choice modelling approach. Revue d’économie politique 117(5), pp. 795–811.
44.
Oerlemans et al. 2016 – Oerlemans, L.A.G.; Chan, K.-Y. and Volschenk, J. 2016. Willingness to pay for green electricity: A review of the contingent valuation literature and its sources of error. Renewable and Sustainable Energy Reviews 66, pp. 875–885, DOI: 10.1016/j.rser.2016.08.054.
45.
Palm, J. and Tengvard, M. 2011. Motives for and barriers to household adoption of small-scale production of electricity: examples from Sweden. Sustainability: Science, Practice and Policy 7(1), pp. 6–15, DOI: 10.1080/15487733.2011.11908061.
46.
Pleeging et al. 2020 – Pleeging, E., van Exel, J., Burger, M.J. and Stavropoulos, S. 2020. Hope for the future and willingness to pay for sustainable energy. Ecological Economics, p. 106900, DOI: 10.1016/j.ecolecon.2020.106900.
47.
Ray, D. 2019. Lazard’s Levelized Cost of Energy Analysis – Version 13.0. Lazard: New York, NY, USA, p. 20.
48.
Romańczyk, K.M. 2018. Krakow – The city profile revisited. Cities 73, pp. 138–150, DOI: 10.1016/j.cities.2017.09.011.
49.
Shen et al. 2020 – Shen, N., Deng, R., Liao, H. and Shevchuk, O. 2020. Mapping renewable energy subsidy policy research published from 1997 to 2018: A scientometric review. Utilities Policy 64, p. 101055.
50.
Soon, J.-J. and Ahmad, S.-A. 2015. Willingly or grudgingly? A meta-analysis on the willingness-to-pay for renewable energy use. Renewable and Sustainable Energy Reviews 44, pp. 877–887, DOI: 10.1016/j.rser.2015.01.041.
51.
Sundt, S. and Rehdanz, K. 2015. Consumers’ willingness to pay for green electricity: A meta-analysis of the literature. Energy Economics 51, pp. 1–8, DOI: 10.1016/j.eneco.2015.06.005.
52.
Szulgowska-Zgrzywa et al. 2020 – Szulgowska-Zgrzywa, M., Stefanowicz, E., Piechurski, K., Chmielewska, A. and Kowalczyk, M. 2020. Impact of Users’ Behavior and Real Weather Conditions on the Energy Consumption of Tenement Houses in Wroclaw, Poland: Energy Performance Gap Simulation Based on a Model Calibrated by Field Measurements. Energies 13(24), p. 6707, DOI: 10.3390/en13246707.
53.
Tainio et al. 2020 – Tainio, M., Jovanovic Andersen Z., Nieuwenhuijsen, M.J., Hu, L., Nazelle, A. de; An, R. et al. 2020. Air pollution, physical activity and health: A mapping review of the evidence. Environment international 147, p. 105954, DOI: 10.1016/j.envint.2020.105954.
54.
Tianyu, J. and Meng, L. 2020. Does education increase pro-environmental willingness to pay? Evidence from Chinese household survey. Journal of Cleaner Production 275, p. 122713, DOI: 10.1016/j.jclepro.2020.122713.
55.
Traczyk, P. and Gruszecka-Kosowska, A. 2020. The Condition of Air Pollution in Kraków, Poland, in 2005–2020, with Health Risk Assessment. International journal of environmental research and public health 17(17), DOI: 10.3390/ijerph17176063.
56.
Trancik, J.E. and Cross-Call, D. 2013. Energy technologies evaluated against climate targets using a cost and carbon trade-off curve. Environmental science & technology 47(12), pp. 6673–6680, DOI: 10.1021/es304922v.
57.
Vand et al. 2019 – Vand, B., Hast, A., Bozorg, S., Li, Z., Syri, S. and Deng, S. 2019. Consumers’ Attitudes to Support Green Energy: A Case Study in Shanghai. Energies 12(12), p. 2379, DOI: 10.3390/en12122379.
58.
Venkatachalam, L. 2004. The contingent valuation method: a review. Environmental Impact Assessment Review 24(1), pp. 89–124, DOI: 10.1016/S0195-9255(03)00138-0.
59.
Vossler et al. 2003 – Vossler, C.A., Ethier, R.G., Poe, G.L. and Welsh, M.P. 2003. Payment certainty in discrete choice contingent valuation responses: results from a field validity test. Southern Economic Journal, pp. 886–902.
60.
Whitehead, J.C. and Cherry, T.L. 2007. Willingness to pay for a Green Energy program: A comparison of ex-ante and ex-post hypothetical bias mitigation approaches. Resource and Energy Economics 29(4), pp. 247–261, DOI: 10.1016/j.reseneeco.2006.10.001.
61.
Wiser, R.H. 2007. Using contingent valuation to explore willingness to pay for renewable energy: A comparison of collective and voluntary payment vehicles. Ecological Economics 62(3–4), pp. 419–432, DOI: 10.1016/j.ecolecon.2006.07.003.
62.
Woo et al. 2019 – Woo, J.R., Chung, S., Lee, C.-Y. and Huh, S.-Y. 2019. Willingness to participate in community-based renewable energy projects: A contingent valuation study in South Korea. Renewable and Sustainable Energy Reviews 112, pp. 643–652, DOI: 10.1016/j.rser.2019.06.010.
63.
Zhang et al. 2019 – Zhang, C., Wang, Q., Zeng, S., Baležentis, T., Štreimikienė, D., Ališauskaitė-Šeškienė, I. and Chen, X. 2019. Probabilistic multi-criteria assessment of renewable micro-generation technologies in households. Journal of Cleaner Production 212, pp. 582–592, DOI: 10.1016/j.jclepro.2018.12.051.
64.
Zhao et al. 2019 – Zhao, X., Cheng, H., Zhao, H., Jiang, L. and Xue, B. 2019. Survey on the households’ energy-saving behaviors and influencing factors in the rural loess hilly region of China. Journal of Cleaner Production 230, pp. 547–556, DOI: 10.1016/j.jclepro.2019.04.385.
65.
Zhu et al. 2016 – Zhu, H., Deng, Y., Zhu, R. and He, X. 2016. Fear of nuclear power? Evidence from Fukushima nuclear accident and land markets in China. Regional science and urban economics 60, pp. 139–154, DOI: 10.1016/j.regsciurbeco.2016.06.008.
66.
Zografakis et al. 2010 – Zografakis, N., Sifaki, E., Pagalou, M., Nikitaki, G., Psarakis, V. and Tsagarakis, K.P. 2010. Assessment of public acceptance and willingness to pay for renewable energy sources in Crete. Renewable and Sustainable Energy Reviews 14(3), pp. 1088–1095.
67.
Zorić, J. and Hrovatin, N. 2012. Household willingness to pay for green electricity in Slovenia. Energy Policy 47, pp. 180–187, DOI: 10.1016/j.enpol.2012.04.055.