ORIGINAL PAPER
Autonomous hybrid power plants based on renewable and traditional sources of electricity
 
More details
Hide details
1
International University of Innovative Technologies and Energy, Kyrgyzstan
 
2
Institute of Innovative Technologies and Energy, Kyrgyzstan
 
3
I. Razzakov Kyrgyz State Technical University, Kyrgyzstan
 
 
Submission date: 2023-06-08
 
 
Final revision date: 2023-07-06
 
 
Acceptance date: 2023-07-18
 
 
Publication date: 2023-12-19
 
 
Corresponding author
Turdumambet Barpybaev   

Institute of Innovative Technologies and Energy, Kyrgyzstan
 
 
Polityka Energetyczna – Energy Policy Journal 2023;26(4):149-164
 
KEYWORDS
TOPICS
ABSTRACT
The purpose of this study is to consider a passive balancing system for battery storage which in the future will increase their reliability, reduce maintenance costs, reduce wear and tear and increase service life, as well as to study a new method of quasi-opposition search for harmony in order to stabilize the supplied electricity. To this end, various theoretical methods of scientific study (analysis, concretization, comparison, generalization) were applied. The method considered in this article for improving the performance of batteries using a passive balancing system, using the example of a typical structural diagram of an autonomous hybrid power plant presented here, would increase the efficiency of pre-project work on the development of highly efficient design and circuit solutions and increase the battery life. The new method of quasi-opposition searches for harmony for hybrid power plants based on renewable and traditional energy sources, taking into account features of their design and operation, would make it possible to stabilize the load frequency of the consumer at the time of switching the station between power sources. This study can be useful for the circle of people associated with energy, for students studying renewable energy in higher education institutions, as well as their teachers, in order to familiarize themselves with the problems of hybrid stations and find options for their solutions.
METADATA IN OTHER LANGUAGES:
Polish
Autonomiczne elektrownie hybrydowe oparte na odnawialnych i tradycyjnych źródłach energii elektrycznej
elektrownia, zasoby niewyczerpalne, baterie, częstotliwość obciążenia, układ bilansujący
Celem niniejszego artykułu jest rozważenie pasywnego systemu równoważenia akumulatorów, który w przyszłości zwiększy ich niezawodność, zmniejszy koszty konserwacji, zmniejszy zużycie i wydłuży żywotność, a także zbadanie nowej metody quasi-opozycyjnego poszukiwania harmonii w celu stabilizacji dostarczanej energii elektrycznej. W tym celu zastosowano różne teoretyczne metody badań naukowych (analiza, konkretyzacja, porównanie, uogólnienie). Rozważana w tym artykule metoda poprawy wydajności akumulatorów przy użyciu pasywnego systemu równoważenia, na przykładzie przedstawionego tutaj typowego schematu strukturalnego autonomicznej elektrowni hybrydowej, zwiększyłaby efektywność prac przedprojektowych nad opracowaniem wysoce wydajnych rozwiązań projektowych i obwodowych oraz wydłużyłaby żywotność baterii. Nowa metoda quasi-opozycyjnego poszukiwania harmonii dla hybrydowych elektrowni opartych na odnawialnych i tradycyjnych źródłach energii, z uwzględnieniem i tradycyjnych źródeł energii, biorąc pod uwagę cechy ich konstrukcji i działania, umożliwiłaby stabilizację częstotliwości obciążenia odbiorcy w momencie przełączania stacji pomiędzy źródłami zasilania. Niniejsze opracowanie może być przydatne dla środowiska osób związanych z energetyką, dla studentów studiujących energetykę odnawialną na uczelniach wyższych, a także dla ich wykładowców i ich nauczycieli, w celu zapoznania się z problemami stacji hybrydowych i znalezienia możliwości ich rozwiązania.
REFERENCES (34)
1.
Alameri, S.A. and Alkaabi, A.K. 2018. Assessment of a nuclear reactor-thermal energy storage coupled system. Transactions of the American Nuclear Society 118, pp. 693–695, Conference: ANS Annual Summer Meeting 2018, At: Philadelphia, Pennsylvania, USA.
 
2.
Al-Shetwi, A.Q. 2022. Sustainable development of renewable energy integrated power sector: Trends, environmental impacts, and recent challenges. Science of The Total Environment 822, DOI: 10.1016/j.scitotenv.2022.153645.
 
3.
Avdieieva et al. 2020 – Avdieieva, E., Stavinskiy, R., Sadovoy, O., Shebanin, V., Vakhonina, L. and Andrii, R. 2020. Technological Parameters of the Magnetic Circuit of the Compact Transformer for Aggregate Electric Drive. [In:] Proceedings of the 25th IEEE International Conference on Problems of Automated Electric Drive. Theory and Practice, PAEP 2020. Kremenchuk: Institute of Electrical and Electronics Engineers, DOI: 10.1109/PAEP49887.2020.9240779.
 
4.
Baybagyshov, E. and Degembaeva, N. 2019. Analysis of usage of the renewable energy in Kyrgyzstan. IOP Conference Series: Earth and Environmental Science 249, 012021.
 
5.
Bórawski et al. 2019 – Bórawski, P., Bełdycka-Bórawska, A., Szymańska, E.J., Jankowski, K.J., Dubis, B. and Dunn, J.W. 2019. Development of renewable energy sources market and biofuels in the European Union. Journal of Cleaner Production 228, pp. 467–484, DOI: 10.1016/j.jclepro.2019.04.242.
 
6.
Borisov et al. 1998 – Borisov, Y., Korzhyk, V. and Revo, S. 1998. Electric and magnetic properties of thermal spray coatings with an amorphous structure. Proceedings of the International Thermal Spray Conference 1, pp. 687–691.
 
7.
Botpaev et al. 2011 – Botpaev, R., Budig, C., Orozaliev, J., Vajen, K., Akparaliev, R., Omorov, A. and Obozov, A. 2011. Renewable energy in Kyrgyzstan: State, policy and educational system [Online]. http://proceedings.ises.org/pa... [Accessed: 2022-06-14].
 
8.
Brodny et al 2021 – Brodny, J., Tutak, M. and Bindzár, P. 2021. Assessing the level of renewable energy development in the European Union member states. A 10-year perspective. Energies 14(13), DOI: 10.3390/en14133765.
 
9.
Cao et al. 2015 – Cao, S., Duan, X., Zhao, X., Wang, B., Ma, J., Fan, D., Sun, C., He, B., Wei, F. and Jiang, G. 2015. Health risk assessment of various metal(loid)s via multiple exposure pathways on children living near a typical lead-acid battery plant, China. Environmental Pollution 200, pp. 16–23, DOI: 10.1016/j.envpol.2015.02.010.
 
10.
Chernets et al. 2008 – Chernets, O.V., Korzhyk, V.M., Marynsky, G.S., Petrov, S.V. and Zhovtyansky, V.A. 2008. Electric arc steam plasma conversion of medicine waste and carbon containing materials. [In:] GD 2008 – 17th International Conference on Gas Discharges and Their Applications, pp. 465–468.
 
11.
Climate Profile of the Kyrgyz Republic 2014. [Online] https://www.undp.org/kyrgyzsta... [Accessed: 2022-06-14].
 
12.
Dykes et al. 2020 – Dykes, K., King, J., DiOrio, N., King, R., Gevorgian, V., Corbus, D., Blair, N., Anderson, K., Stark, G., Turchi, C., and Moriarty, P. 2020. Opportunities for research and development of hybrid power plants. Golden: National Renewable Energy Laboratory.
 
13.
Global Energy Review 2021. 2021. [Online] https://www.iea.org/reports/gl... [Accessed: 2022-06-14].
 
14.
Havrysh et al. 2019 – Havrysh, V., Nitsenko, V., Bilan, Y. and Streimikiene, D. 2019. Assessment of optimal location for a centralized biogas upgrading facility. Energy and Environment 30(3), pp. 462–480, DOI: doi.org/10.1177/0958305X18793110.
 
15.
Havrysh et al. 2020 – Havrysh, V., Kalinichenko, A., Mentel, G., Mentel, U. and Vasbieva, D.G. 2020. Husk energy supply systems for sunflower oil mills. Energies 13(2), DOI: 10.3390/en13020361.
 
16.
Ismayil-Zada, M. 2022. Analysis of the Possibilities of Calculating Energy Needs Using Methods of Economic Theory. Review of Economics and Finance 20, pp. 1125–1133, DOI: 10.55365/1923.x2022.20.126.
 
17.
Kondratenko et al. 2018 – Kondratenko, Y.P., Kozlov, O.V., Kondratenko, G.V. and Atamanyuk, I.P. 2018. Mathematical model and parametrical identification of ecopyrogenesis plant based on soft computing techniques. Studies in Systems, Decision and Control 125, pp. 201–233, DOI: 10.1007/978-3-319-69989-9_13.
 
18.
Kusznier, J. 2023. Influence of environmental factors on the intelligent management of photovoltaic and wind sections in a hybrid power plant. Energies 16(4), DOI: 10.3390/en16041716.
 
19.
Li et al. 2022 – Li, L., Jian, L., Nianyuan, W., Shan, X., Chao, M., Yanan, Z., Xiaonan, W. and Yingru, Z. 2022. Review and outlook on the international renewable energy development. Energy and Built Environment 3(2), pp. 139–157.
 
20.
Mehta et al. 2022a – Mehta, K., Ehrenwirth, M., Trinkl, C. and Zörner, W. 2022a. Towards sustainable community development through renewable energies in Kyrgyzstan: A detailed assessment and outlook. World 3(2), pp. 327–343, DOI: 10.3390/world3020018.
 
21.
Mehta et al. 2022b – Mehta, K., Mingaleva, E., Zörner, W., Degembaeva, N. and Baybagyshov E. 2022b. Comprehensive analysis of the energy legislative framework of Kyrgyzstan: Investigation to develop a roadmap of Kyrgyz renewable energy sector. Cleaner Energy Systems 2, DOI: 10.1016/j.cles.2022.100013.
 
22.
Murdock et al. 2021 – Murdock, H.E., Gibb, D., Andre, T., Sawin, J.L., Brown, A., Ranalder, L., Collier, U., Dent, C., Epp, B., Hareesh Kumar, C., Joubert, F., Kamara, R., Ledanois, N., Levin, R., Skeen, J., Sverrisson, F., Wright, G., Passaro, F., Guerra, F., Dwi Sastriani, N. M., Yaqoob, H., Gicquel, S., Hamirwasia, V., Kifukwe, G., Yuan-Perrin, Y., Mayer, T., Williamson, L. E., Budiman, A., Chen, O., Findlay, K., Harris, A., Jones-Langley, J., Urbani, F., Mastny, L. and Brumer, L. 2021. Renewables 2021 – Global status report. INIS 52(25), 52059346.
 
23.
Mustaeva, N. and Kartayeva, S. 2019. Status of climate change adaptation in Central Asian region. [In:] Status of Climate Change Adaptation in Asia and the Pacific. Cham: Springer Cham, pp. 41–67, DOI: 10.1007/978-3-319-99347-8_4.
 
24.
Qazi et al. 2019 – Qazi, A., Hussain, F., Rahim, N.A.B.D., Hardaker, G., Alghazzawi, D., Shaban K. and Haruna, K. 2019. Towards sustainable energy: A systematic review of renewable energy sources, technologies, and public opinions. IEEE Access 7, pp. 63837–63851.
 
25.
Recycling used lead-acid batteries: Health considerations. 2017. [Online] https://www.who.int/publicatio... [Accessed: 2022-06-14].
 
26.
Sadeghi, S. and Askari, I.B. 2019. Prefeasibility techno-economic assessment of a hybrid power plant with photovoltaic, fuel cell and Compressed Air Energy Storage (CAES). Energy 168, pp. 409–424, DOI: 10.1016/j.energy.2018.11.108.
 
27.
Sadykov et al. 2018 – Sadykov, M.A., Beishenbaev, A.T. and Keneshov, K.B. 2018. Development of the use of renewable energy sources in the Kyrgyz Republic. Science and Innovative Technologies 3(8), pp. 106–108.
 
28.
Shaimurunov et al. 2023 – Shaimurunov, S., Ryspayev, K., Ismailov, A., Zhikeyev, A. and Salykov, B. 2023. Study of the Efficiency of Using Facilities Based on Renewable Energy Sources for Charging Electric Vehicles in Kazakhstan. International Journal of Sustainable Development and Planning 18(4), pp. 1263–1269, DOI: 10.18280/ijsdp180431.
 
29.
Shankar, G. and Mukherjee, V. 2016. Load frequency control of an autonomous hybrid power system by quasi-oppositional harmony search algorithm. International Journal of Electrical Power & Energy Systems 78, pp. 715–734, DOI: 10.1016/j.ijepes.2015.11.091.
 
30.
Share of energy consumption from renewable sources in Europe 2022. [Online] https://www.eea.europa.eu/ims/... [Accessed: 2022-06-14].
 
31.
Stavinskii et al. 2019 – Stavinskii, A., Shebanin, V., Avdieieva, E., Sadovoy, O., Vakhonina, L. and Tsyganov, A. 2019. Axial Asynchronous Motor with A Rotor Two-section Cone-cylindrical Magnetic Circuit. [In:] Proceedings of the International Conference on Modern Electrical and Energy Systems, MEES 2019. Kremenchuk: Institute of Electrical and Electronics Engineers, pp. 106–109, DOI: 10.1109/MEES.2019.8896477.
 
32.
Suyundukov, N.T. and Sadykov, M.A. 2020. Applications of solar energy. Science and Innovative Technologies 3(16), pp. 123–129.
 
33.
Tarkeshwar and Mukherjee, V. 2015. A novel quasi-oppositional harmony search algorithm and fuzzy logic controller for frequency stabilization of an isolated hybrid power system. International Journal of Electrical Power & Energy Systems 66, pp. 247–261, DOI: 10.1016/j.ijepes.2014.10.050.
 
34.
U-802: What causes capacity loss? 2021. [Online] https://batteryuniversity.com/... [Accessed: 2022-06-14].
 
eISSN:2720-569X
ISSN:1429-6675
Journals System - logo
Scroll to top