ORIGINAL PAPER
Energy efficiency of the phytoremediation process supported with the use of energy crops – P. arundinacea L. and Brassica napus L.
 
More details
Hide details
1
Division of Biogenic Raw Materials, Mineral and Energy Economy Research Institute, Poland
 
2
Division of Infrastructure and Environmental Engineering, Częstochowa University of Technology, Poland
 
 
Submission date: 2019-08-06
 
 
Final revision date: 2019-08-20
 
 
Acceptance date: 2019-08-20
 
 
Publication date: 2019-09-27
 
 
Corresponding author
Dariusz Włóka   

Division of Biogenic Raw Materials, Mineral and Energy Economy Research Institute, Wybickiego st., 31-261, Kraków, Poland
 
 
Polityka Energetyczna – Energy Policy Journal 2019;22(3):119-136
 
KEYWORDS
TOPICS
ABSTRACT
The objective of the experiment was to evaluate the energy efficiency of the phytoremediation process, supported using energy crops. The scope of conducted work includes the preparation of a field experiment. During the evaluation, 2 factors were into consideration – total energy demand and total energy benefit. The case study, used as an origin of data, consists a 3-years field study, conducted with the use of 2 energy crops – Phalaris arundinacea L. and Brassica napus L. The area subjected to the experiment was polluted with polycyclic aromatic hydrocarbons (PAHs) and herbicides, classified as phenoxy acids (2, 4 D). The experimental design consisted of 4 groups of fields, divided according to the used plant species and type of treatment. For each energy crop, 2 types of fertilization strategies were used. Therefore the 1st and 3rd sets of fields were not treated with any soil amendment while the 2nd and 4th sets were fertilized with compost. The obtained data allowed to observe that the cultivation of P. arundinacea L. and B. napus L. allowed a positive energy balance of the process to be achieved. However, it should be noted, that the B. napus L. growth in the first vegetation season was not sufficient to fully compensate a total energy demand. Such a goal, in the mentioned case, was possible after the 2nd vegetation season. The collected results show also that the best energetic potential combined with the most effective soil remediation were obtained on the fields with the cultivation of P. arundinacea L. fertilized with compost. The number of biofuels, collected from the 1 ha of such fields, can reach a value equal even to12.76 Mg of coal equivalent.
METADATA IN OTHER LANGUAGES:
Polish
Efektywność energetyczna procesu fitoremediacji wspomaganego użyciem roślin energetycznych – P. arundinacea L. i Brassica napus L.
rośliny energetyczne, fitoremediacja, efektywność energetyczna, zanieczyszczenia organiczne, wielopierścieniowe węglowodory aromatyczne (WWA)
Celem eksperymentu było dokonanie oceny efektywności energetycznej procesu fitoremediacji, wspieranego przez uprawy roślin energetycznych. Zakres prowadzonych prac obejmował przygotowanie badań polowych. Podczas oceny wzięto pod uwagę całkowite zużycie energii i całkowitą korzyść energetyczną uzyskaną z termicznej konwersji zebranych biopaliw. Badane studium przypadku, składało się z 3-letniego doświadczenia, prowadzonego z użyciem 2 roślin energetycznych – P. arundinacea L. i B. napus L. Obszar objęty pracami zanieczyszczony był wielopierścieniowymi węglowodorami aromatycznymi (WWA) oraz herbicydami (2,4 D). Eksperyment składał się z 4 grup poletek, podzielonych według stosowanego gatunku roślin i rodzaju wykonanego zabiegu pomocniczego. Dla każdej z wybranych roślin zastosowano 2 rodzaje strategii nawożenia: poletka 1 i 3 nie były nawożone, poletka 2 i 4 natomiast nawożono kompostem. Uzyskane dane pozwoliły zaobserwować, że uprawa P. arundinacea L. i B. napus L. pozwala osiągnąć dodatni bilans energetyczny procesu. Należy jednak zauważyć, że wzrost B. napus L. w pierwszym sezonie wegetacyjnym nie był wystarczający, aby w pełni zrekompensować całkowite zapotrzebowanie energetyczne. Osiągnięcie celu energetycznego we wspomnianym przypadku było możliwe po 2. sezonie wegetacyjnym. W doświadczeniu zaobserwowano również, że najlepszy potencjał energetyczny w połączeniu z najskuteczniejszą rekultywacją gleby, uzyskano na polach z uprawą P. arundinacea nawożonego kompostem. Ilość biopaliwa zebranego z 1 ha pozwoliło osiągnąć wartość równą nawet 12,76 Mg ekwiwalentu węgla.
REFERENCES (38)
1.
Alkio et al. 2005 – Alkio, M., Tabuchi, T.M., Wang, X. and Colon-Carmona, A. 2005. Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response-like symptoms. Journal of Experimental Botany 56 (421), pp. 2983–2994.
 
2.
Anawar, H. M. and Strezov, V. 2018. Renewable Energy Production from Energy Crops: Effect of Agronomic Practices. Policy, and Environmental and Economic Sustainability. In Renewable Energy Systems from Biomass. CRC Press pp. 89–101.
 
3.
Antosiewicz, D.M. 1992. Adaptation of plants to an environment polluted with heavy metals. Acta Societatis Botanicorum Poloniae 61 (2), pp. 281.
 
4.
Bispo et al. 1999 – Bispo, A., Jourdain, M.J. and Jauzein, M. 1999. Toxicity and genotoxicity of industrial soils polluted by polycyclic aromatic hydrocarbons (PAHs). Organic Geochemistry 30 (8), pp. 947–952.
 
5.
Calfapietra et al. 2015 – Calfapietra, C., Peñuelas, J. and Niinemets, Ü. 2015. Urban plant physiology: adaptation-mitigation strategies under permanent stress. Trends in plant science 20 (2), pp. 72–75.
 
6.
Cheng, J. (ed.). 2017. Biomass to renewable energy processes. CRC press.
 
7.
Energy from renewable sources in 2017 (Energia ze źródeł odnawialnych w 2017 roku). The General Statistical Office (GUS). 2018 (in Polish).
 
8.
EuroStat data set, 2019. [Online] https://appsso.eurostat.ec.eur... [Accessed: 2019-07-18].
 
9.
Fisher, J. 2003. Energy Density of Coal. The Physics Factbook.
 
10.
Grisso et al. 2004 – Grisso, R.D., Kocher, M.F. and Vaughan, D.H. 2004. Predicting tractor fuel consumption. Applied Engineering in Agriculture 20 (5), pp. 553.
 
11.
Huang et al. 2004 – Huang, X.D., El-Alawi, Y., Penrose, D.M., Glick, B.R. and Greenberg, B.M. 2004. A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environmental pollution 130 (3), pp. 465–476.
 
12.
Hussein et al. 2006 – Hussein, M.S., El-Sherbeny, S.E., Khalil, M.Y., Naguib, N.Y. and Aly, S.M. 2006. Growth characters and chemical constituents of Dracocephalum moldavica L. plants in relation to compost fertilizer and planting distance. Scientia Horticulturae 108 (3), pp. 322–331.
 
13.
Karczewska, A. and Kabała, C. 2008. Metodyka analiz laboratoryjnych gleb i roślin. Wyd. Akademii Rolniczej we Wrocławiu, Wrocław.
 
14.
Kozłowski, W. 2018. Evaluation of financial investment profitability in biomass production in using of energetic necessities (Ocena opłacalności finansowej inwestycji w produkcję biomasy na potrzeby energetyki). Ekonomika i Organizacja Przedsiębiorstwa (1), pp. 67–78 (in Polish).
 
15.
Kulczycka, J. and Smol, M. 2016. Environmentally friendly pathways for the evaluation of investment projects using life cycle assessment (LCA) and life cycle cost analysis (LCCA). Clean Technologies and Environmental Policy 18 (3), pp. 829–842.
 
16.
Kuppusamy et al. 2017 – Kuppusamy, S., Thavamani, P., Venkateswarlu, K., Lee, Y.B., Naidu, R. and Megharaj, M. 2017. Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions. Chemosphere 168, pp. 944–968.
 
17.
Lewandowski, W. and Ryms, M. 2013. Biopaliwa. Proekologiczne odnawialne źródła energii. WNT press, pp. 1–528.
 
18.
Maliszewska-Kordybach, B. and Smreczak, B. 2000. Ecotoxicological activity of soils polluted with polycyclic aromatic hydrocarbons (PAHs)-effect on plants. Environmental Technology 21 (10), pp. 1099–1110.
 
19.
Nam et al. 2008 – Nam, J.J., Thomas, G.O., Jaward, F.M., Steinnes, E., Gustafsson, O. and Jones, K. C. 2008. PAHs in background soils from Western Europe: influence of atmospheric deposition and soil organic matter. Chemosphere 70 (9), pp. 1596–1602.
 
20.
Oleszczuk, P. 2006. Persistence of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge-amended soil. Chemosphere 65 (9), pp. 1616–1626.
 
21.
Omidi-Arjenaki et al. 2016 – Omidi-Arjenaki, O., Ebrahimi, R. and Ghanbarian, D. 2016. Analysis of energy input and output for honey production in Iran (2012–2013). Renewable and Sustainable Energy Reviews 59, pp. 952–957.
 
22.
Pandey et al. 2016 – Pandey, V.C., Bajpai, O. and Singh, N. 2016. Energy crops in sustainable phytoremediation. Renewable and Sustainable Energy Reviews 54, pp. 58–73.
 
23.
Placek et al. 2017 – Placek, A., Grobelak, A., Hiller, J., Stępień, W., Jelonek, P., Jaskulak, M. and Kacprzak, M. 2017. The role of organic and inorganic amendments in carbon sequestration and immobilization of heavy metals in degraded soils. Journal of Sustainable Development of Energy, Water and Environment Systems 5(4), pp. 509–517.
 
24.
Placek et al. 2018 – Placek, A., Grobelak, A., Włóka, D., Kowalska, A., Singh, B.L., Almas, A.R., and Kacprzak, M. 2018. Methods for calculating carbon sequestration in degraded soil of zinc smelter and post-mining areas. Desalination and Water Treatment 134, pp. 233–243.
 
25.
Robertson, M.M. and Kirkwood, R.C. 1970. The mode of action of foliage-applied translocated herbicides with particular reference to the phenoxy-acid compounds. 2. The mechanism and factors influencing translocation, metabolism and biochemical inhibition. Weed Research 10(2), pp. 94–120.
 
26.
Rosikon et al. 2015 – Rosikon, K., Fijalkowski, K. and Kacprzak, M. 2015. Phytoremediation Potential of selected energetic plants (Miscanthus giganteus L and Phalaris arundinacea L) in dependence on fertilization. J Environ Sci Eng A 10, pp. 2162–5298.
 
27.
Scarlat et al. 2015 – Scarlat, N., Dallemand, J.F., Monforti-Ferrario, F., Banja, M. and Motola, V. 2015. Renewable energy policy framework and bioenergy contribution in the European Union–An overview from National Renewable Energy Action Plans and Progress Reports. Renewable and Sustainable Energy Reviews 51, pp. 969–985.
 
28.
Sigmund et al. 2018 – Sigmund, G., Poyntner, C., Piñar, G., Kah, M. and Hofmann, T. 2018. Influence of compost and biochar on microbial communities and the sorption/degradation of PAHs and NSO-substituted PAHs in contaminated soils. Journal of hazardous materials 345, pp. 107–113.
 
29.
Smol et al. 2014 – Smol, M., Włodarczyk-Makuła, M., Mielczarek, K. and Bohdziewicz, J. 2014. Comparison of the retention of selected PAHs from municipal landfill leachate by RO and UF processes. Desalination and Water Treatment 52 (19–21), pp. 3889–3897.
 
30.
Szulecki et al. 2016 – Szulecki, K., Fischer, S., Gullberg, A.T. and Sartor, O. 2016. Shaping the ‘Energy Union’: between national positions and governance innovation in EU energy and climate policy. Climate Policy 16 (5), pp. 548–567.
 
31.
Trinh et al. 2019 – Trinh, T. T., Werle, S., Tran, K. Q., Magdziarz, A., Sobek, S. and Pogrzeba, M. 2019. Energy crops for sustainable phytoremediation–Thermal decomposition kinetics. Energy Procedia 158, pp. 873–878.
 
32.
Tyszkiewicz et al. 2019 – Tyszkiewicz, Z.E., Czubaszek, R. and Roj-Rojewski, S. 2019. Podstawowe metody laboratoryjnej analizy gleby. Politechnika Białostocka.
 
33.
Vassilev et al. 2015 – Vassilev, S.V., Vassileva, C.G. and Vassilev, V.S. 2015. Advantages and disadvantages of composition and properties of biomass in comparison with coal: an overview. Fuel 158, pp. 330–350.
 
34.
Vendrame et al. 2005 – Vendrame, W.A., Maguire, I. and Moore, K.K. 2005. Growth of selected bedding plants as affected by different compost percentages. In Proceedings of the Florida State Horticultural Society 118, pp. 368–371.
 
35.
Wang et al. 2017 – Wang, J., Zhang, X., Ling, W., Liu, R., Liu, J., Kang, F. and Gao, Y. 2017. Contamination and health risk assessment of PAHs in soils and crops in industrial areas of the Yangtze River Delta region, China. Chemosphere 168, pp. 976–987.
 
36.
Włóka et al. 2015 – Włóka, D., Kacprzak, M., Grobelak, A., Grosser, A. and Napora, A. 2015. The impact of PAHs contamination on the physicochemical properties and microbiological activity of industrial soils. Polycyclic Aromatic Compounds 35 (5), pp. 372–386.
 
37.
Włóka et al. 2019 – Włóka, D., Placek, A., Smol, M., Rorat, A., Hutchison, D. and Kacprzak, M. 2019. The efficiency and economic aspects of phytoremediation technology using Phalaris arundinacea L. and Brassica napus L. combined with compost and nano SiO2 fertilization for the removal of PAH’s from soil. Journal of environmental management 234, pp. 311–319.
 
38.
Włóka et al. 2018 – Włóka, D., Smol, M., Placek, A. and Kacprzak, M. 2018. The use of P. arundinacea in phytoremediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs) and selected herbicides (Zastosowanie P. arundinacea w fitoremediacji gleb skażonych wielopierścieniowymi węglowodorami aromatycznymi (WWA) oraz wybranymi herbicydami). Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN No. 102, pp. 185–202 (in Polish).
 
eISSN:2720-569X
ISSN:1429-6675
Journals System - logo
Scroll to top