REVIEW PAPER
Exploring stakeholder engagement in energy system modelling and planning: a systematic review using SWOT analysis
 
 
More details
Hide details
1
Northern Institute, Charles Darwin University, Darwin, Australia, Australia
 
 
Submission date: 2025-02-06
 
 
Final revision date: 2025-06-05
 
 
Acceptance date: 2025-06-09
 
 
Publication date: 2025-09-30
 
 
Corresponding author
Riasad Amin   

Northern Institute, Charles Darwin University, Darwin, Australia, Ellengowan Dr, Casuarina NT, 0810, Darwin, Australia
 
 
Polityka Energetyczna – Energy Policy Journal 2025;28(3):153-178
 
KEYWORDS
TOPICS
ABSTRACT
The global energy transition toward sustainability requires frameworks that integrate technical, economic, and social aspects. Stakeholder involvement is crucial in energy system modeling and planning. This study systematically reviews stakeholder involvement techniques in energy system modeling by employing a SWOT analysis to evaluate engagement strategies. It aims to examine the effectiveness of various approaches to stakeholder participation and explore approaches for incorporating stakeholders into decision-making to enhance public trust and acceptance of energy transition models. This study identifies and analyses three primary engagement approaches: information, consultation, and collaboration. A SWOT analysis was conducted to assess the strengths and weaknesses of each approach. The information approach effectively disseminates knowledge but is limited by its unidirectional nature. The consultation approach facilitates two-way dialogue but may struggle to incorporate stakeholder input effectively. The resource-intensive collaborative approach offers opportunities for enhanced knowledge sharing and ongoing stakeholder engagement. The study concludes that informational and consultative approaches are the most effective when utilized as components of a broader collaborative framework. These findings contribute to the knowledge base for modelers, policymakers, and researchers engaged in energy transition planning and offer valuable insights for developing more socially equitable energy transition strategies.
CONFLICT OF INTEREST
The Author has no conflicts of interest to declare.
METADATA IN OTHER LANGUAGES:
Polish
Badanie zaangażowania interesariuszy w modelowanie i planowanie systemów energetycznych: przegląd systematyczny z wykorzystaniem analizy SWOT
zaangażowanie interesariuszy, analiza SWOT, modelowanie systemów energetycznych, zrównoważona transformacja energetyczna, wspólne podejmowanie decyzji
Globalna transformacja energetyczna w kierunku zrównoważonego rozwoju wymaga ram, które integrują aspekty techniczne, ekonomiczne i społeczne. Zaangażowanie interesariuszy ma kluczowe znaczenie w modelowaniu i planowaniu systemów energetycznych. Niniejsze studium stanowi przegląd systematyczny technik angażowania interesariuszy w modelowanie systemów energetycznych poprzez zastosowanie analizy SWOT do oceny strategii zaangażowania. Ma ono na celu zbadanie skuteczności różnych podejść do udziału interesariuszy oraz metod włączania interesariuszy w proces podejmowania decyzji w celu zwiększenia zaufania publicznego i akceptacji modeli transformacji energetycznej. W badaniu zidentyfikowano i przeanalizowano trzy podstawowe podejścia do zaangażowania: informacyjne, konsultacyjne i oparte na współpracy. Przeprowadzono analizę SWOT w celu oceny mocnych i słabych stron każdego z tych podejść. Podejście informacyjne skutecznie rozpowszechnia wiedzę, ale jest ograniczone ze względu na swój jednokierunkowy charakter. Podejście konsultacyjne ułatwia dwustronny dialog, ale może powodować trudności z efektywnym włączeniem opinii interesariuszy. Podejście oparte na współpracy, wymagające dużych nakładów zasobów, oferuje możliwości lepszej wymiany wiedzy i ciągłego zaangażowania interesariuszy. W ramach badania stwierdzono, że podejścia informacyjne i konsultacyjne są najskuteczniejsze, gdy są wykorzystywane jako elementy szerszych ram współpracy. Wyniki te stanowią wkład w bazę wiedzy dla modelarzy, decydentów i badaczy zajmujących się planowaniem transformacji energetycznej oraz oferują cenne spostrzeżenia dotyczące opracowywania bardziej sprawiedliwych społecznie strategii transformacji energetycznej.
REFERENCES (86)
1.
AlSabbagh et al. 2015 – AlSabbagh, M., Siu, Y. L., Guehnemann, A. and Barrett, J. 2015. Mitigation of CO2 emissions from the road passenger transport sector in Bahrain. Mitigation and Adaptation Strategies for Global Change 22(1), pp. 99–119, DOI: 10.1007/s11027-015-9666-8.
 
2.
Alvial-Palavicino et al. 2011 – Alvial-Palavicino, C., Garrido-Echeverría, N., Jiménez-Estévez, G., Reyes, L. and Palma-Behnke, R. 2011. A methodology for community engagement in the introduction of renewable based smart microgrid. Energy for Sustainable Development 15(3), pp. 314–323, DOI: 10.1016/j.esd.2011.06.007.
 
3.
Amin et al. 2024 – Amin, R., Mathur, D., Ompong, D. and Zander, K.K. 2024. Integrating Social Aspects into Energy System Modelling Through the Lens of Public Perspectives: A Review. Energies 17(23), DOI: 10.3390/en17235880.
 
4.
Andersen et al. 2021 – Andersen, P.D., Hansen, M. and Selin, C. 2021. Stakeholder inclusion in scenario planning – A review of European projects. Technological Forecasting and Social Change 169, DOI: 10.1016/j.techfore.2021.120802.
 
5.
Atwell et al. 2011 – Atwell, R.C., Schulte, L.A. and Westphal, L.A. 2011. Tweak, Adapt, or Transform: Policy Scenarios in Response to Emerging Bioenergy Markets in the U.S. Corn Belt. Ecology and Society 16(1). [Online:] http://www.ecologyandsociety.o... [Accessed: 2025-03-12].
 
6.
Benzaghta et al. 2021 – Benzaghta, M.A., Elwalda, A., Mousa, M., Erkan, I. and Rahman, M. 2021. SWOT analysis applications: An integrative literature review. Journal of Global Business Insights 6(1), pp. 55–73, DOI: 10.5038/2640-6489.6.1.1148.
 
7.
Bernardo, G. and D’Alessandro, S. 2019. Societal implications of sustainable energy action plans: from energy modelling to stakeholder learning. Journal of Environmental Planning and Management 62(3), pp. 399–423, DOI: 10.1080/09640568.2018.1483905.
 
8.
Bertsch, V. and Fichtner, W. 2015. A participatory multi-criteria approach for power generation and transmission planning. Annals of Operations Research 245(1–2), pp. 177–207, DOI: 10.1007/s10479-015-1791-y.
 
9.
Bessette et al. 2014 – Bessette, D.L., Arvai, J. and Campbell-Arvai, V. 2014. Decision support framework for developing regional energy strategies. Environmental Science & Technology 48(3), pp. 1401–1408, DOI: 10.1021/es4036286.
 
10.
Busch, G. 2017. A spatial explicit scenario method to support participative regional land-use decisions regarding economic and ecological options of short rotation coppice (SRC) for renewable energy production on arable land: case study application for the Göttingen district, Germany. Energy, Sustainability and Society 7(1), DOI: 10.1186/s13705-017-0105-4.
 
11.
Chapman, A.J. and Pambudi, N.A. 2018. Strategic and user-driven transition scenarios: Toward a low carbon society, encompassing the issues of sustainability and societal equity in Japan. Journal of Cleaner Production 172, pp. 1014–1024, DOI: 10.1016/j.jclepro.2017.10.225.
 
12.
Clark, T. 2008. We’re Over-Researched Here! Sociology 42(5), pp. 953–970, DOI: 10.1177/0038038508094573.
 
13.
Davidsdottir et al. 2024 – Davidsdottir, B., Ásgeirsson, E.I., Fazeli, R., Gunnarsdottir, I., Leaver, J., Shafiei, E. and Stefánsson, H. 2024. Integrated Energy Systems Modeling with Multi-Criteria Decision Analysis and Stakeholder Engagement for Identifying a Sustainable Energy Transition. Energies 17(17), DOI: 10.3390/en17174266.
 
14.
DeCarolis et al. 2020 – DeCarolis, J.F., Jaramillo, P., Johnson, J.X., McCollum, D.L., Trutnevyte, E., Daniels, D.C., Akın-Olçum, G., Bergerson, J., Cho, S., Choi, J.-H., Craig, M.T., de Queiroz, A.R., Eshraghi, H., Galik, C.S., Gutowski, T.G., Haapala, K.R., Hodge, B.-M., Hoque, S., Jenkins, J.D., Jenn, A., Johansson, D.J.A., Kaufman, N., Kiviluoma, J., Lin, Z., MacLean, H.L., Masanet, E., Masnadi, M.S., McMillan, C.A., Nock, D.S., Patankar, N., Patino-Echeverri, D., Schivley, G., Siddiqui, S., Smith, A.D., Venkatesh, A., Wagner, G., Yeh, S. and Zhou, Y. 2020. Leveraging Open-Source Tools for Collaborative Macro-energy System Modeling Efforts. Joule 4(12), pp. 2523–2526, DOI: 10.1016/j.joule.2020.11.002.
 
15.
Demski et al. 2017 – Demski, C., Spence, A. and Pidgeon, N. 2017. Effects of exemplar scenarios on public preferences for energy futures using the my2050 scenario-building tool. Nature Energy 2(4), DOI: 10.1038/nenergy.2017.27.
 
16.
den Herder et al. 2017 – den Herder, M., Kurttila, M., Leskinen, P., Lindner, M., Haatanen, A., Sironen, S., Salminen, O., Juusti, V. and Holma, A. 2017. Is enhanced biodiversity protection conflicting with ambitious bioenergy targets in eastern Finland? Journal of Environmental Management 187, pp. 54–62, DOI: 10.1016/j.jenvman.2016.10.065.
 
17.
Droste-Franke et al. 2020 – Droste-Franke, B., Voge, M. and Kanngießer, A. 2020. Achieving transparency and robustness of regional energy scenarios by using morphological fields in inter- and transdisciplinary project groups. Energy Strategy Reviews 27, DOI: 10.1016/j.esr.2019.100430.
 
18.
Dubinsky et al. 2017 – Dubinsky, J., Baker-Jennings, E., Chernomordik, T., Main, D.S. and Karunanithi, A.T. 2017. Engaging a rural agricultural community in sustainability indicators and future scenario identification: case of San Luis Valley. Environment, Development and Sustainability 21(1), pp. 79–93, DOI: 10.1007/s10668-017-0024-8.
 
19.
Dubois et al. 2019 – Dubois, A., Holzer, S., Xexakis, G., Cousse, J. and Trutnevyte, E. 2019. Informed Citizen Panels on the Swiss Electricity Mix 2035: Longer-Term Evolution of Citizen Preferences and Affect in Two Cities. Energies 12(22), DOI: 10.3390/en12224231.
 
20.
Düspohl et al. 2014 – Düspohl, M., Siew, T.F. and Döll, P. 2014. Building trust while modeling with stakeholders as requirement for social learning. International Environmental Modelling and Software Society (iEMSs), San Diego, California, USA.
 
21.
Eker et al. 2017 – Eker, S., Zimmermann, N., Carnohan, S. and Davies, M. 2017. Participatory system dynamics modelling for housing, energy and wellbeing interactions. Building Research & Information, 46(7), pp. 738–754, DOI: 10.1080/09613218.2017.1362919.
 
22.
Ernst et al. 2018 – Ernst, A., Biß, K.H., Shamon, H., Schumann, D. and Heinrichs, H.U. 2018. Benefits and challenges of participatory methods in qualitative energy scenario development. Technological Forecasting and Social Change 127, pp. 245–257, DOI: 10.1016/j.techfore.2017.09.026.
 
23.
Flacke, J. and De Boer, C. 2017. An Interactive Planning Support Tool for Addressing Social Acceptance of Renewable Energy Projects in The Netherlands. ISPRS International Journal of Geo-Information 6(10), DOI: 10.3390/ijgi6100313.
 
24.
Foran et al. 2016 – Foran, T., Fleming, D., Spandonide, B., Williams, R. and Race, D. 2016. Understanding energy-related regimes: A participatory approach from central Australia. Energy Policy 91, pp. 315–324, DOI: 10.1016/j.enpol.2016.01.014.
 
25.
Fortes et al. 2015 – Fortes, P., Alvarenga, A., Seixas, J. and Rodrigues, S. 2015. Long-term energy scenarios: Bridging the gap between socio-economic storylines and energy modeling. Technological Forecasting and Social Change 91, pp. 161–178, DOI: 10.1016/j.techfore.2014.02.006.
 
26.
Giannouli et al. 2018 – Giannouli, I., Tourkolias, C., Zuidema, C., Tasopoulou, A., Blathra, S., Salemink, K., Gugerell, K., Georgiou, P., Chalatsis, T., Christidou, C., Bellis, V., Vasiloglou, N. and Koutsomarkos, N. 2018. A methodological approach for holistic energy planning using the living lab concept: the case of the prefecture of Karditsa. European Journal of Environmental Sciences 8(1), pp. 14–22, DOI: 10.14712/23361964.2018.3.
 
27.
Heaslip, E. and Fahy, F. 2018. Developing transdisciplinary approaches to community energy transitions: An island case study. Energy Research & Social Science 45, pp. 153–163, DOI: 10.1016/j.erss.2018.07.013.
 
28.
Höltinger et al. 2016 – Höltinger, S., Salak, B., Schauppenlehner, T., Scherhaufer, P. and Schmidt, J. 2016. Austria’s wind energy potential – A participatory modeling approach to assess socio-political and market acceptance. Energy Policy 98, pp. 49–61, DOI: 10.1016/j.enpol.2016.08.010.
 
29.
Holzer et al. 2023 – Holzer, S., Dubois, A., Cousse, J., Xexakis, G. and Trutnevyte, E. 2023. Swiss electricity supply scenarios: Perspectives from the young generation. Energy and Climate Change 4, DOI: 10.1016/j.egycc.2023.100109.
 
30.
Jeong, J.S. 2018. Biomass Feedstock and Climate Change in Agroforestry Systems: Participatory Location and Integration Scenario Analysis of Biomass Power Facilities. Energies 11(6), DOI: 10.3390/en11061404.
 
31.
Kok et al. 2014 – Kok, K., Bärlund, I., Flörke, M., Holman, I., Gramberger, M., Sendzimir, J., Stuch, B., and Zellmer, K. 2014. European participatory scenario development: strengthening the link between stories and models. Climatic Change 128(3–4), pp. 187–200, DOI: 10.1007/s10584-014-1143-y.
 
32.
Kowalski et al. 2009 – Kowalski, K., Stagl, S., Madlener, R. and Omann, I. 2009. Sustainable energy futures: Methodological challenges in combining scenarios and participatory multi-criteria analysis. European Journal of Operational Research 197(3), pp. 1063–1074, DOI: 10.1016/j.ejor.2007.12.049.
 
33.
Krumm et al. 2022 – Krumm, A., Süsser, D. and Blechinger, P. 2022. Modelling social aspects of the energy transition: What is the current representation of social factors in energy models? Energy 239, DOI: 10.1016/j.energy.2021.121706.
 
34.
Krzywoszynska et al. 2016 – Krzywoszynska, A., Buckley, A., Birch, H., Watson, M., Chiles, P., Mawyin, J., Holmes, H. and Gregson, N. 2016. Co-producing energy futures: impacts of participatory modelling. Building Research & Information 44(7), pp. 804–815, DOI: 10.1080/09613218.2016.1211838.
 
35.
Lang et al. 2012 – Lang, D.J., Wiek, A., Bergmann, M., Stauffacher, M., Martens, P., Moll, P., Swilling, M. and Thomas, C.J. 2012. Transdisciplinary research in sustainability science: practice, principles, and challenges. Sustainability Science 7(S1), pp. 25–43, DOI: 10.1007/s11625-011-0149-x.
 
36.
Liegl et al. 2023 – Liegl, T., Schramm, S., Kuhn, P. and Hamacher, T. 2023. Considering Socio-Technical Parameters in Energy System Models – The Current Status and Next Steps. Energies 16(20), DOI: 10.3390/en16207020.
 
37.
Macmillan et al. 2016 – Macmillan, A., Davies, M., Shrubsole, C., Luxford, N., May, N., Chiu, L.F., Trutnevyte, E., Bobrova, Y. and Chalabi, Z. 2016. Integrated decision-making about housing, energy and wellbeing: a qualitative system dynamics model. Environ Health, 15 Suppl 1 (Suppl 1) 37, DOI: 10.1186/s12940-016-0098-z.
 
38.
Madlener et al. 2007 – Madlener, R., Kowalski, K. and Stagl, S. 2007. New ways for the integrated appraisal of national energy scenarios: The case of renewable energy use in Austria. Energy Policy 35(12), pp. 6060–6074, DOI: 10.1016/j.enpol.2007.08.015.
 
39.
Madurai Elavarasan et al. 2020 – Madurai Elavarasan, R., Afridhis, S., Vijayaraghavan, R.R., Subramaniam, U. and Nurunnabi, M. 2020. SWOT analysis: A framework for comprehensive evaluation of drivers and barriers for renewable energy development in significant countries. Energy Reports 6, pp. 1838–1864, DOI: 10.1016/j.egyr.2020.07.007.
 
40.
Marinakis et al. 2017 – Marinakis, V., Doukas, H., Xidonas, P. and Zopounidis, C. 2017. Multicriteria decision support in local energy planning: An evaluation of alternative scenarios for the Sustainable Energy Action Plan. Omega 69, pp. 1–16, DOI: 10.1016/j.omega.2016.07.005.
 
41.
Mathy et al. 2015 – Mathy, S., Fink, M. and Bibas, R. 2015. Rethinking the role of scenarios: Participatory scripting of low-carbon scenarios for France. Energy Policy 77, pp. 176–190, DOI: 10.1016/j.enpol.2014.11.002.
 
42.
Mayer et al. 2014 – Mayer, L.A., Bruine de Bruin, W. and Morgan, M.G. 2014. Informed public choices for low-carbon electricity portfolios using a computer decision tool. Environmental Science & Technology 48(7), pp. 3640–3648, DOI: 10.1021/es403473x.
 
43.
McDowall, W. 2012. Possible Hydrogen Transitions in the UK: Critical Uncertainties and Possible Decision Points. Energy Procedia 29, pp. 409–420, DOI: 10.1016/j.egypro.2012.09.048.
 
44.
McDowall, W. and Eames, M. 2007. Towards a sustainable hydrogen economy: A multi-criteria sustainability appraisal of competing hydrogen futures. International Journal of Hydrogen Energy 32(18), pp. 4611–4626, DOI: 10.1016/j.ijhydene.2007.06.020.
 
45.
McGookin et al. 2021 – McGookin, C., Gallachóir, B.Ó. and Byrne, E. 2021. Participatory methods in energy system modelling and planning – A review. Renewable and Sustainable Energy Reviews 151, DOI: 10.1016/j.rser.2021.111504.
 
46.
McGookin et al. 2024 – McGookin, C., Süsser, D., Xexakis, G., Trutnevyte, E., McDowall, W., Nikas, A., Koasidis, K., Few, S., Andersen, P.D., Demski, C., Fortes, P., Simoes, S.G., Bishop, C., Rogan, F. and Gallachóir, B.Ó. 2024. Advancing participatory energy systems modelling. Energy Strategy Reviews 52, DOI: 10.1016/j.esr.2024.101319.
 
47.
McKenna et al. 2018 – McKenna, R., Bertsch, V., Mainzer, K. and Fichtner, W. 2018. Combining local preferences with multi-criteria decision analysis and linear optimization to develop feasible energy concepts in small communities. European Journal of Operational Research 268(3), pp. 1092–1110, DOI: 10.1016/j.ejor.2018.01.036.
 
48.
Michas et al. 2020 – Michas, S., Stavrakas, V., Papadelis, S. and Flamos, A. 2020. A transdisciplinary modeling framework for the participatory design of dynamic adaptive policy pathways. Energy Policy 139, DOI: 10.1016/j.enpol.2020.111350.
 
49.
Miles, S. 2015. Stakeholder Theory Classification: A Theoretical and Empirical Evaluation of Definitions. Journal of Business Ethics 142(3), pp. 437–459, DOI: 10.1007/s10551-015-2741-y.
 
50.
Ministry of Climate and Environment 2021. Energy policy of Poland until 2040 (PEP2040). Warsaw: Government of Poland. [Online:] https://www.gov.pl/web/climate... [Accessed: 2025-04-25].
 
51.
Nabielek et al. 2018 – Nabielek, P., Dumke, H. and Weninger, K. 2018. Balanced renewable energy scenarios: a method for making spatial decisions despite insufficient data, illustrated by a case study of the Vorderland-Feldkirch Region, Vorarlberg, Austria. Energy, Sustainability and Society 8(1), DOI: 10.1186/s13705-017-0144-x.
 
52.
Noboa et al. 2018 – Noboa, E., Upham, P. and Heinrichs, H. 2018. Collaborative energy visioning under conditions of illiberal democracy: results and recommendations from Ecuador. Energy, Sustainability and Society 8(1), DOI: 10.1186/s13705-018-0173-0.
 
53.
Patel et al. 2007 – Patel, M., Kok, K. and Rothman, D.S. 2007. Participatory scenario construction in land use analysis: An insight into the experiences created by stakeholder involvement in the Northern Mediterranean. Land Use Policy 24(3), pp. 546–561, DOI: 10.1016/j.landusepol.2006.02.005.
 
54.
PRISMA 2025. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). [Online:] https://www.prisma-statement.o... [Accessed: 2024-09-27].
 
55.
Robertson et al. 2017 – Robertson, E., O’Grady, Á., Barton, J., Galloway, S., Emmanuel-Yusuf, D., Leach, M., Hammond, G., Thomson, M. and Foxon, T. 2017. Reconciling qualitative storylines and quantitative descriptions: An iterative approach. Technological Forecasting and Social Change 118, pp. 293–306, DOI: 10.1016/j.techfore.2017.02.030.
 
56.
Rowe, G. and Frewer, L.J. 2005. A Typology of Public Engagement Mechanisms. Science, Technology & Human Values 30(2), pp. 251–290, DOI: 10.1177/0162243904271724.
 
57.
Salerno et al. 2010 – Salerno, F., Viviano, G., Thakuri, S., Flury, B., Maskey, R.K., Khanal, S.N., Bhuju, D., Carrer, M., Bhochhibhoya, S., Melis, M.T., Giannino, F., Staiano, A., Carteni, F., Mazzoleni, S., Cogo, A., Sapkota, A., Shrestha, S., Pandey, R.K. and Manfredi, E.C. 2010. Energy, Forest, and Indoor Air Pollution Models for Sagarmatha National Park and Buffer Zone, Nepal. Mountain Research and Development 30(2), pp. 113–126, DOI: 10.1659/mrd-journal-d-10-00027.1.
 
58.
Schinko et al. 2019 – Schinko, T., Bohm, S., Komendantova, N., Jamea, E.M. and Blohm, M. 2019. Morocco’s sustainable energy transition and the role of financing costs: a participatory electricity system modeling approach. Energy, Sustainability and Society 9(1), DOI: 10.1186/s13705-018-0186-8.
 
59.
Schmid, E. and Knopf, B. 2012. Ambitious mitigation scenarios for Germany: A participatory approach. Energy Policy 51, pp. 662–672, DOI: 10.1016/j.enpol.2012.09.007.
 
60.
Schmid et al. 2017 – Schmid, E., Pechan, A., Mehnert, M. and Eisenack, K. 2017. Imagine all these futures: On heterogeneous preferences and mental models in the German energy transition. Energy Research & Social Science 27, pp. 45–56, DOI: 10.1016/j.erss.2017.02.012.
 
61.
Schmitt Olabisi et al. 2010 – Schmitt Olabisi, L.K., Kapuscinski, A.R., Johnson, K.A., Reich, P.B., Stenquist, B. and Draeger, K.J. 2010. Using Scenario Visioning and Participatory System Dynamics Modeling to Investigate the Future: Lessons from Minnesota 2050. Sustainability 2(8), pp. 2686–2706, DOI: 10.3390/su2082686.
 
62.
Schneider, F. and Rist, S. 2013. Envisioning sustainable water futures in a transdisciplinary learning process: combining normative, explorative, and participatory scenario approaches. Sustainability Science 9(4), pp. 463–481, DOI: 10.1007/s11625-013-0232-6.
 
63.
Sharma et al. 2020 – Sharma, T., Gallachóir, B.Ó. and Rogan, F. 2020. A new hybrid approach for evaluating technology risks and opportunities in the energy transition in Ireland. Environmental Innovation and Societal Transitions 35, pp. 429–444, DOI: 10.1016/j.eist.2020.01.012.
 
64.
Sharmina, M. 2017. Low-carbon scenarios for Russia’s energy system: A participative backcasting approach. Energy Policy 104, pp. 303–315, DOI: 10.1016/j.enpol.2017.02.009.
 
65.
Simoes et al. 2019 – Simoes, S.G., Dias, L., Gouveia, J.P., Seixas, J., De Miglio, R., Chiodi, A., Gargiulo, M., Long, G. and Giannakidis, G. 2019. InSmart – A methodology for combining modelling with stakeholder input towards EU cities decarbonisation. Journal of Cleaner Production 231, pp. 428–445, DOI: 10.1016/j.jclepro.2019.05.143.
 
66.
Soria-Lara, J.A. and Banister, D. 2018. Collaborative backcasting for transport policy scenario building. Futures 95, pp. 11–21, DOI: 10.1016/j.futures.2017.09.003.
 
67.
Sovacool et al. 2015 – Sovacool, B.K., Ryan, S.E., Stern, P.C., Janda, K., Rochlin, G., Spreng, D., Pasqualetti, M.J., Wilhite, H. and Lutzenhiser, L. 2015. Integrating social science in energy research. Energy Research & Social Science 6, pp. 95–99, DOI: 10.1016/j.erss.2014.12.005.
 
68.
Srivastava et al. 2005 – Srivastava, P.K., Kulshreshtha, K., Mohanty, C.S., Pushpangadan, P. and Singh, A. 2005. Stakeholder-based SWOT analysis for successful municipal solid waste management in Lucknow, India. Waste Management 25(5), pp. 531–537, DOI: 10.1016/j.wasman.2004.08.010.
 
69.
Steinberger et a. 2020 – Steinberger, F., Minder, T. and Trutnevyte, E. 2020. Efficiency versus Equity in Spatial Siting of Electricity Generation: Citizen Preferences in a Serious Board Game in Switzerland. Energies 13(18), DOI: 10.3390/en13184961.
 
70.
Terrados et al. 2007 – Terrados, J., Almonacid, G. and Hontoria, L. 2007. Regional energy planning through SWOT analysis and strategic planning tools. Renewable and Sustainable Energy Reviews 11(6), pp. 1275–1287, DOI: 10.1016/j.rser.2005.08.003.
 
71.
Thomas et al. 2018 – Thomas, M., Partridge, T., Pidgeon, N., Harthorn, B.H., Demski, C. and Hasell, A. 2018. Using role play to explore energy perceptions in the United States and United Kingdom. Energy Research & Social Science 45, pp. 363–373, DOI: 10.1016/j.erss.2018.06.026.
 
72.
Trutnevyte, E. 2016. Does cost optimization approximate the real-world energy transition? Energy 106, pp. 182–193, DOI: 10.1016/j.energy.2016.03.038.
 
73.
Trutnevyte et al. 2019 – Trutnevyte, E., Hirt, L.F., Bauer, N., Cherp, A., Hawkes, A., Edelenbosch, O.Y., Pedde, S. and van Vuuren, D.P. 2019. Societal Transformations in Models for Energy and Climate Policy: The Ambitious Next Step. One Earth 1(4), pp. 423–433, DOI: 10.1016/j.oneear.2019.12.002.
 
74.
Trutnevyte, E. and Stauffacher, M. 2012. Opening up to a critical review of ambitious energy goals: Perspectives of academics and practitioners in a rural Swiss community. Environmental Development 2, pp. 101–116, DOI: 10.1016/j.envdev.2012.01.001.
 
75.
Trutnevyte et al. 2011 – Trutnevyte, E., Stauffacher, M. and Scholz, R.W. (2011). Supporting energy initiatives in small communities by linking visions with energy scenarios and multi-criteria assessment. Energy Policy 39(12), pp. 7884–7895, DOI: 10.1016/j.enpol.2011.09.038.
 
76.
Uwasu et al. 2020 – Uwasu, M., Kishita, Y., Hara, K. and Nomaguchi, Y. 2020. Citizen-Participatory Scenario Design Methodology with Future Design Approach: A Case Study of Visioning of a Low-Carbon Society in Suita City, Japan. Sustainability 12(11), DOI: 10.3390/su12114746.
 
77.
Vaidya, A. and Mayer, A.L. 2016. Use of a participatory approach to develop a regional assessment tool for bioenergy production. Biomass and Bioenergy 94, pp. 1–11, DOI: 10.1016/j.biombioe.2016.08.001.
 
78.
Vargas et al. 2019 – Vargas, C., Morales, R., Sáez, D., Hernández, R., Muñoz, C., Huircán, J., Espina, E., Alarcón, C., Caquilpan, V., Painemal, N., Roje, T. and Cárdenas, R. 2019. Methodology for Microgrid/Smart Farm Systems: Case of Study Applied to Indigenous Mapuche Communities. [In:] Advances in Information and Communication Technologies for Adapting Agriculture to Climate Change II, pp. 89–105, DOI: 10.1007/978-3-030-04447-3_6.
 
79.
Venturini et al. 2019 – Venturini, G., Hansen, M. and Andersen, P.D. 2019. Linking narratives and energy system modelling in transport scenarios: A participatory perspective from Denmark. Energy Research & Social Science 52, pp. 204–220, DOI: 10.1016/j.erss.2019.01.019.
 
80.
Voinov, A. and Bousquet, F. 2010. Modelling with stakeholders. Environmental Modelling & Software 25(11), pp. 1268–1281, DOI: 10.1016/j.envsoft.2010.03.007.
 
81.
Volken et al. 2018 – Volken, S.P., Xexakis, G. and Trutnevyte, E. 2018. Perspectives of Informed Citizen Panel on Low-Carbon Electricity Portfolios in Switzerland and Longer-Term Evaluation of Informational Materials. Environmental Science & Technology 52(20), pp. 11478–11489, DOI: 10.1021/acs.est.8b01265.
 
82.
Wilkens, I. and Schmuck, P. 2012. Transdisciplinary Evaluation of Energy Scenarios for a German Village Using Multi-Criteria Decision Analysis. Sustainability 4(4), pp. 604–629, DOI: 10.3390/su4040604.
 
83.
Xexakis et al. 2020 – Xexakis, G., Hansmann, R., Volken, S.P. and Trutnevyte, E. 2020. Models on the wrong track: Model-based electricity supply scenarios in Switzerland are not aligned with the perspectives of energy experts and the public. Renewable and Sustainable Energy Reviews 134, DOI: 10.1016/j.rser.2020.110297.
 
84.
Xexakis, G. and Trutnevyte, E. 2022. Model-based scenarios of EU27 electricity supply are not aligned with the perspectives of French, German, and Polish citizens. Renewable and Sustainable Energy Transition 2, DOI: 10.1016/j.rset.2022.100031.
 
85.
Zelt et al. 2019 – Zelt, O., Krüger, C., Blohm, M., Bohm, S. and Far, S. 2019. Long-Term Electricity Scenarios for the MENA Region: Assessing the Preferences of Local Stakeholders Using Multi-Criteria Analyses. Energies 12(16), DOI: 10.3390/en12163046.
 
86.
Zivkovic et al. 2016 – Zivkovic, M., Pereverza, K., Pasichnyi, O., Madzarevic, A., Ivezic, D. and Kordas, O. 2016. Exploring scenarios for more sustainable heating: The case of Niš, Serbia. Energy 115, pp. 1758–1770, DOI: 10.1016/j.energy.2016.06.034.
 
eISSN:2720-569X
ISSN:1429-6675
Journals System - logo
Scroll to top