ORIGINAL PAPER
Study on daylighting mode of energy-efficient buildings
More details
Hide details
1
Cheung Kong School of Art & Design, Shantou University, China
Submission date: 2021-03-31
Final revision date: 2021-04-22
Acceptance date: 2021-04-24
Publication date: 2021-06-21
Corresponding author
Xiangyong Wu
Cheung Kong School of Art & Design, Shantou University, China
Polityka Energetyczna – Energy Policy Journal 2021;24(2):183-206
KEYWORDS
TOPICS
ABSTRACT
The research considers the aspect of the formation of interior lightning in conditions of extensive expenses on heating. In this regard there is important to study features not only of places and model of lightning, but also generation of heat in order to minimize expenses and find alternative technical solutions for building functioning. The relevance is determined by the fact that the problem of low efficiency of thermal energy used to ensure an appropriate microclimate in buildings is typical for many regions. The purpose of this article is to study features not only of places and model of lighting but also generation of heat to minimize expenses and find alternative technical solutions for building functioning. In the work, the methods of calculation methods and mathematical models such as the exergy model of humans were used. The authors have determined that daylight is only one of the complex solutions of the matter of building energy efficiency. Providing the conditions of heating comfort indoors is not less important in the conditions of increasing requirements to energy conservation. The authors consider the compromise between these two requirements without harming human health the main challenge to the energy conservation specialists. The authors have developed the model, which evaluates not only the achievements of technical parameters, but also orientation toward the model of energy consumption of human. The practical application of the developed methodology allows for forecasting not only building heating based on projected technical indicators but also tailored to individual needs.
METADATA IN OTHER LANGUAGES:
Polish
Aspekty wykorzystania światła dziennego w budynkach energooszczędnych
budownictwo, energooszczędność, człowiek, konstrukcja, oświetlenie, ogrzewanie
W artykule przedstawiono aspekty projektowania oświetlenia wewnętrznego w warunkach dużych nakładów na ogrzewanie. O trafności tematu decyduje fakt, że problem niskiej efektywności wykorzystania energii cieplnej w celu zapewnienia odpowiedniego mikroklimatu w budynkach jest typowy dla wielu regionów. Celem artykułu jest zbadanie cech nie tylko lokalizacji i modelu oświetlenia, ale także wydzielania ciepła, aby zminimalizować wydatki i znaleźć alternatywne rozwiązania techniczne dla funkcjonowania budynku. W pracy posłużono się metodami obliczeniowymi oraz modelami matematycznymi, takimi jak model egzergii człowieka. Ustalono, że światło dzienne to tylko jedno z kompleksowych rozwiązań kwestii energooszczędności budynków. Zapewnienie warunków komfortu cieplnego w pomieszczeniach jest równie ważne w obliczu rosnących wymagań dotyczących oszczędzania energii. Autorzy uważają, że kompromis między tymi dwoma wymogami bez szkody dla zdrowia ludzkiego jest głównym wyzwaniem dla specjalistów od oszczędzania energii. Opracowano model, który ocenia nie tylko osiągane parametry techniczne, ale także orientację na model zużycia energii przez człowieka. Praktyczne zastosowanie tej metodyki pozwala prognozować ogrzewanie budynku nie tylko na podstawie przewidywanych wskaźników technicznych, ale także z uwzględnieniem indywidualnych potrzeb.
REFERENCES (20)
1.
Adinyira et al. 2018 – Adinyira, E., Kwofie, E.T. and Quarcoo, F. 2018. Stakeholder requirements for building energy efficiency in mass housing delivery: The House of Quality approach. Environment, Development and Sustainability 20(3), pp. 1115‒1131.
2.
Bozorgi, A. 2015. Integrating value and uncertainty in the energy retrofit analysis in real estate investment – next generation of energy efficiency assessment tools. Energy Efficiency 8(5), pp. 1015‒1034.
3.
Drissi Lamrhari, E.-H. and Benhamou, B. 2018. Thermal behavior and energy saving analysis of a flat with different energy efficiency measures in six climates. Building Simulation 11(6), pp. 1123‒1144.
4.
Goubran et al. 2017 – Goubran, S., Qi, D. and Wang, L.L. 2017. Assessing dynamic efficiency of air curtain in reducing whole building annual energy usage. Building Simulation 10(4), pp. 497‒507.
5.
Grande-Acosta, G.K. and Islas-Samperio, J.M. 2020. Boosting energy efficiency and solar energy inside the residential, commercial, and public services sectors in Mexico. Energies 13(21), pp. 1–24.
6.
Groumpos, P.P. and Mpelogianni, V. 2020. New advanced technology methods for energy efficiency of buildings. 11th International Conference on Information, Intelligence, Systems and Applications, IISA 2020, DOI: 10.1109/IISA50023.2020.9284345.
7.
Hanus et al. 2018 – Hanus, N., Wong-Parodi, G., Small, M.J. and Grossmann, I. 2018. The role of psychology and social influences in energy efficiency adoption. Energy Efficiency 11(2), pp. 371‒391.
8.
Hinrichsen et al. 2020 – Hinrichsen, T.F., Chan, C.C.S., Ma, C., Paleček, D., Gillett, A., Chen, S., Zou, X. and Chow, P.C.Y. 2020. Long-lived and disorder-free charge transfer states enable endothermic charge separation in efficient non-fullerene organic solar cells. Nature Communications 11(1), 5617.
9.
Hong et al. 2018 – Hong, T., Langevin, J. and Sun, K. 2018. Building simulation: Ten challenges. Building Simulation 11(5), pp. 871–898.
10.
Jaffee et al. 2019 – Jaffee, D., Stanton, R. and Wallace, N. 2019. Energy factors, leasing structure and the market price of office buildings in the U.S. Journal of Real Estate Finance and Economics 59(3), pp. 329‒371.
11.
Karuthedath et al. 2021 – Karuthedath, S., Gorenflot, J., Firdaus, Y., Chaturvedi, N., De Castro, C.S.P., harrison, G.T., Khan, J.I. and Laquai, F. 2021. Intrinsic efficiency limits in low-bandgap non-fullerene acceptor organic solar cells. Nature Materials 20(3), pp. 378‒384.
12.
Kok et al. 2012 – Kok, N., Mcgraw, M. and Quigley, J.M. 2012. The diffusion over time and space of energy efficiency in building. The Annals of Regional Science 48(2), pp. 541‒564.
13.
Krukovskii et al. 2017 – Krukovskii, P.G., Tadlya, O.YU., Daineko, A.I. and Sklyarenko, D.I. 2017. Thermophysical analysis of the efficiency of regulating heat consumption of a building. Journal of Engineering Physics and Thermophysics 90(5), pp. 1243‒1250.
14.
Li et al. 2014 – Li, J., He, J. and Arora, A. 2014. ThermoNet: Fine-grain assessment of building comfort and efficiency. Journal of Ambient Intelligence and Humanized Computing 5(3), pp. 369‒382.
15.
Li et al. 2020 – Li, Z., Chen, X. and Zhang, D. 2020. Design optimization of radiation cooling terminal for ultra-low-energy consumption office buildings. Environmental Science and Engineering, pp. 661‒669.
16.
Liu, Q. and Ren, J. 2018. Research on technology clusters and the energy efficiency of energy-saving retrofits of existing office buildings in different climatic regions. Energy, Sustainability and Society 8(1), 24.
17.
Moreno, V. 2016. Big data: The key to energy efficiency in smart buildings. Soft Computing 20(5), pp. 1749–1762, DOI: 10.1007/s00500-015-1679-4.
18.
Rodrigues et al. 2020 – Rodrigues, F., Isayeva, A., Rodrigues, H. and Pinto, A. 2020. Energy efficiency assessment of a public building resourcing a BIM model. Innovative Infrastructure Solutions 5(2), 41.
19.
Sarevet et al. 2020 – Sarevet, H., Fadejev, J., Thalfeldt, M. and Kurnitski, J. 2020. Residential buildings with heat pumps peak power reduction with high performance insulation. E3S Web of Conferences 172, DOI: 10.1051/e3sconf/20200172.12008.
20.
Scott et al. 2008 – Scott, M.J., Dirks, J.A. and Cort, K.A. 2008. The value of energy efficiency programs for US residential and commercial buildings in a warmer world. Mitigation and Adaptation Strategies for Global Change 13(4), pp. 307‒339.