ORIGINAL PAPER
”Mój Prąd” as an example of the photovoltaic one off grant program in Poland
Piotr Olczak 1  
,   Dominika Matuszewska 1, 2  
,   Dominik Kryzia 1  
 
More details
Hide details
1
Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Poland
2
AGH University of Science and Technology, Poland
CORRESPONDING AUTHOR
Piotr Olczak   

Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Poland
Submission date: 2020-04-10
Final revision date: 2020-05-15
Acceptance date: 2020-05-15
Publication date: 2020-06-26
 
Polityka Energetyczna – Energy Policy Journal 2020;23(2):123–138
 
KEYWORDS
TOPICS
ABSTRACT
There are many financial ways to intensify the construction of new renewable energy sources installations, among others: feed in tariff, grants. An example of photovoltaic grant support in Poland is the “Mój Prąd” [My Electricity] program created in 2019. This program, with a budget of PLN 1 billion, is intended for households in which installations with a capacity range of 2–10 kWp have been installed. During its first edition 27,187 application were submitted. Over 98% of installations cost less than PLN 6,000/kWp. The total installed capacity is 151.3 MWp, which gives the average amount of co-funding per unit of power at the level of PLN 884.7/kWp. The average power of the installation on the national scale is 5.57 kWp, the indicator per 1000 inhabitants is 3.94 kWp, and per unit of area is 0.484 kWp/km2. These installations will produce around 143.5 GWh of electricity annually, contributing to the reduction of CO2 emissions by approximately 109,800 Mg per year. Most applications came from the Silesian Province (3855), which translated into the largest installed capacity of 21.82 MWp, as well as 4.81 kWp/1000 inhabitants and 1.77 kWp/km2 (over 3 times higher than the average in Poland).The installed capacity in the individual province was closely correlated with the population of the province (correlation coefficient – 0.95), while the installed capacity indicator per 1,000 inhabitants with insolation (0.80). The highest power ratio per 1000 inhabitants was achieved in the Podkarpackie Province and amounted to 5.05, and the lowest in the West Pomeranian Province (2.41).
METADATA IN OTHER LANGUAGES:
Polish
„Mój Prąd” jako przykład programu dotacyjnego na fotowoltaikę w Polsce
fotowoltaika, odnawialne źródła energii, OZE, „Mój Prąd”, OZE polityka
Istnieje wiele finansowych sposobów na intensyfikowanie budowy nowych instalacji OZE, m.in.: taryfa gwarantowana, dotacje. Przykładem grantowego wsparcia fotowoltaiki w Polsce jest powstały w 2019 roku program „Mój Prąd”. Program ten, z budżetem 1 mld zł, jest przeznaczony dla gospodarstw domowych, w których zostały zainstalowane instalacje z przedziału mocy 2–10 kWp. Podczas jego pierwszej edycji zgłoszonych było 27 187 instalacji. Ponad 98% instalacji kosztowało mniej niż 6000 zł/kWp (z czteropunktową punktacją). Całkowita moc zainstalowana to 151,3 MWp, co daje średnią wielkość dofinansowania w przeliczeniu na moc na poziomie 884,7 zł/kWp. Średnia moc instalacji w skali kraju to 5,57 kWp, wskaźnik na 1000 mieszkańców to 3,94 kWp, a na jednostkę powierzchni 0,484 kWp/km2. Instalacje te pozwolą na wyprodukowanie ok. 143,5 GWh energii elektrycznej rocznie, przyczyniając się do redukcji emisji CO2 o ok. 109 800 Mg rocznie. Najwięcej wniosków pochodziło z woj. śląskiego (3855), co przełożyło się na największą moc zainstalowaną 21,82 MWp oraz wskaźnik 4,81 kWp/1000 mieszkańców i 1,77 kWp/km2 (ponad 3-krotnie wyższy niż średnia w Polsce). Zainstalowana moc w poszczególnych województwach była ściśle skorelowana z liczbą ludności województwa (współczynnik korelacji – 0,95), a wskaźnik mocy zainstalowanej na 1000 mieszkańców – z nasłonecznieniem (0,80). Najwyższy wskaźnik mocy/1000 mieszkańców (PPI) został osiągnięty w woj. podkarpackim i wyniósł 5,05, a najniższy w woj. zachodniopomorskim (2,41).
 
REFERENCES (31)
1.
Arbab-Zavar et al. 2019 – Arbab-Zavar, B., Palacios-Garcia, E.J., Vasquez, J.C. and Guerrero, J.M. 2019. Smart inverters for microgrid applications: A review. Energies Vol. 12, No. 5, DOI: 10.3390/en12050840.
 
2.
Benalcazar et al. 2020 – Benalcazar, P., Suski, A. and Kamiński, J. 2020. The Effects of Capital and Energy Subsidies on the Optimal Design of Microgrid Systems. Energies Vol. 13, No. 4, DOI: 10.3390/en13040955.
 
3.
Böckl et al. 2019 – Böckl, B., Greiml, M., Leitner, L., Pichler, P., Kriechbaum, L. and Kienberger, T. 2019. HyFloW – A hybrid load flow-modelling framework to evaluate the effects of energy storage and sector coupling on the electrical load flows. Energies Vol. 12, No. 5, DOI: 10.3390/en12050956.
 
4.
Burgio et al. 2020 – Burgio, A., Menniti, D., Sorrentino, N., Pinnarelli, A. and Leonowicz, Z. 2020. Influence and impact of data averaging and temporal resolution on the assessment of energetic, economic and technical issues of hybrid photovoltaic-battery systems. Energies Vol. 13, No. 2, DOI: 10.3390/en13020354.
 
5.
Calise et al. 2019 – Calise, F., Figaj, R.D. and Vanoli, L. 2019. Energy performance of a low-cost PhotoVoltaic/Thermal (PVT) collector with and without thermal insulation. IOP Conference Series: Earth and Environmental Science Vol. 214, DOI: 10.1088/1755-1315/214/1/012116.
 
6.
CSO 2019a. Area and population in the territorial proöle in 2019. Central Statistical Office. [Online] https://stat.gov.pl/obszary-te... [Accessed: 2020-04-08].
 
7.
CSO 2019b. Household Budget Survey in 2018.
 
8.
CSO 2019c. Employment, Wages and Salaries in National Economy in I–III Quarters of 2019.
 
9.
CSO 2019d. Energy Consumption in Households in 2018.
 
10.
Derski, B. 2019. How much does a photovoltaic installation co-financed from the program “Mój Prąd” cost? Wysokie Napięcie. [Online] https://wysokienapiecie.pl/249... [Accessed: 2020-04-07].
 
11.
Hansen et al. 2020 – Hansen, P., Morrison, G.M., Zaman, A. and Liu, X. 2020. Smart technology needs smarter management: Disentangling the dynamics of digitalism in the governance of shared solar energy in Australia. Energy Research and Social Science Vol. 60, DOI: 10.1016/j.erss.2019.101322.
 
12.
Institute, I. of E.P.-N.R. 2019. CO2, SO2, NOx, CO and total dust EMISSION RATIOS FOR ELECTRICITY based on the information contained in the National Database of Greenhouse Gas Emissions and other Substances for 2018. KOBiZE (Wskaźniki emisyjności CO2, SO2, NOx, CO i pyłu całkowitego dla energii elektrycznej na podstawie informacji zawartych w Krajowej bazie o emisjach gazów cieplarnianych i innych substancji za 2018 rok). [Online] https://www.kobize.pl/uploads/... [Accessed: 2020-04-07] (in Polish).
 
13.
Kreft et al. 2020 – Kreft, W., Filipowicz, M. and Żołądek, M. 2020. Reduction of electrical power loss in a photovoltaic chain in conditions of partial shading. Optik Vol. 202, DOI: 10.1016/j.ijleo.2019.163559.
 
14.
Krupa et al. 2018 – Krupa, K., Nieradko, Ł. and Haraziński, A. 2018. Prospects for energy storage in the world and in Poland in the 2030 horizon. Polityka Energetyczna – Energy Policy Journal, Vol. 21, Iss. 2, pp. 19–34.
 
15.
Kuchmacz, J. and Mika, Ł. 2018. Description of development of prosumer energy sector in Poland. Polityka Energetyczna Vol. 21, Iss. 4, pp. 5–20.
 
16.
Ministry of Development 2019. Typical Reference Year (Dane do obliczeń energetycznych budynków). [Online] https://www.gov.pl/web/fundusz... [Accessed: 2019-12-18] (in Polish).
 
17.
Mirowski, T. and Sornek, K. 2015. Potential of prosumer power engineering in Poland by example of micro PV installation in private construction. Polityka Energetyczna – Energy Policy Journal Vol. 18, Iss. 2, pp. 73–84.
 
18.
NFOŚiGW 2020. Mój Prąd. National Fund for Environmental Protection and Water Management (Mój Prąd. Wyniki naboru). [Online] https://mojprad.gov.pl/wyniki-... [Accessed: 2020-04-07] (in Polish).
 
19.
Olczak et al. 2018 – Olczak, P., Kryzia, D., Pepłowska, M. and Olek, M. 2018. Influence of Inclination Angle and its Adjustment Time on Insolation of Collector or Photovoltaic Panel. District Heating, Heating, Ventilatio Vol. 49, No. 12, pp. 506–509.
 
20.
Olczak et al. 2020 – Olczak, P., Olek, M. and Kryzia, D. 2020. The ecological impact of using photothermal and photovoltaic installations for DHW preparation. Polityka Energetyczna – Energy Policy Journal Vol. 23, Iss. 1, pp. 65–74.
 
21.
Pepłowska, M. and Olczak, P. 2018. The tilt angle selecting problem of PV panels taking the energy demand profile into account (Problematyka doboru kąta posadowienia paneli fotowoltaicznych z uwzględnieniem profilu zapotrzebowania na energię). Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN No. 102, pp. 91–100 (in Polish).
 
22.
Polska PV 2016. Development of the Polish Solar Market in the Years 2010–2020 (Rozwój polskiego rynku fotowoltaicznego w latach 2010–2020). [Online] https://www.teraz-srodowisko.p... [Accessed: 2020-04-07] (in Polish).
 
23.
Sornek et al. 2018 – Sornek, K., Filipowicz, M. and Jasek, J. 2018. The use of fresnel lenses to improve the efficiency of photovoltaic modules for building-integrated concentrating photovoltaic systems. Journal of Sustainable Development of Energy, Water and Environment Systems. DOI: 10.13044/j.sdewes.d6.0204.
 
24.
Szczerbowski, R. 2013. Energy security of Poland – energy mix and energy efficiency (Bezpieczeństwo energetyczne Polski – mix energetyczny i efektywność energetyczna). Polityka Energetyczna – Energy Policy Journal Vol. 16, Iss. 4, pp. 35–47 (in Polish).
 
25.
Talaat et al. 2019 – Talaat, M., Alsayyari, A.S., Essa, M.A. and Yousef, M.A. 2019. Investigation of transparent pyramidal covers effect to PV power output using detected wireless sensors incident radiation. Measurement: Journal of the International Measurement Confederation Vol. 136, pp. 775–785.
 
26.
Thür et al. 2018 – Thür, A., Calabrese, T. and Streicher, W. 2018. Smart grid and PV driven ground heat pump as thermal battery in small buildings for optimized electricity consumption. Solar Energy Vol. 174, pp. 273–285.
 
27.
Trela, M. and Dubel, A. 2017. Comparing the support systems for renewable energy sources in Poland green certificates vs auction systems (Porównanie systemów wsparcia odnawialnych źródeł energii w Polsce: zielone certyfikaty vs system aukcyjny, na przykładzie instalacji PV). Polityka Energetyczna – Energy Policy Journal Vol. 20, Iss. 2, pp. 105–116 (in Polish).
 
28.
URE 2020. Renewable energy installations as at December 31, 2019 (Instalacje odnawialnych źródeł energii według stanu na dzień 31 grudnia 2019 r.), Energy Regulatory Office. [Online] https://www.ure.gov.pl/pl/oze/... [Accessed: 2020-04-07] (in Polish).
 
29.
Wróbel et al. 2019 – Wróbel, J., Sołtysik, M. and Rogus, R. 2019. Selected elements of the Neighborly Exchange of Energy – Profitability evaluation of the functional model. Polityka Energetyczna – Energy Policy Journal Vol. 22, Iss. 4, pp. 53–64.
 
30.
Zdyb, A. and Gulkowski, S. 2020. Performance assessment of four different photovoltaic technologies in Poland. Energies Vol. 13, No. 1, DOI: 10.3390/en13010196.
 
31.
Żołądek et al. 2019 – Żołądek, M., Filipowicz, M., Sornek, K. and Figaj, R.D. 2019. Energy performance of the photovoltaic system in urban area – Case study. IOP Conference Series: Earth and Environmental Science, DOI: 10.1088/1755-1315/214/1/012123.
 
ISSN:1429-6675