ORIGINAL PAPER
The influence of excessive solar heat gains on heat loss in the hot water tank – case study
More details
Hide details
1
Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Poland
Submission date: 2020-03-28
Final revision date: 2020-05-19
Acceptance date: 2020-05-20
Publication date: 2020-06-26
Corresponding author
Piotr Olczak
Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Poland
Polityka Energetyczna – Energy Policy Journal 2020;23(2):91-104
KEYWORDS
TOPICS
ABSTRACT
The analysis of a solar installation operation was conducted on the example of a detached house in the Lesser Poland province in Poland. A gas boiler and three flat-plate collectors are located inside the house, which are used for heating water in the hot water tank with a volume of 220 dm3. The installation was established in 2012. The heat measured system (for solar gains) was added in 2014. In 2015–2019 solar heat gains measured per area of absorber were higher than 340 kWh/m2. During a two-week period in June 2015, the insolation on the horizontal plane and the temperature were measured in 4 different points of the hot water tank. On this basis, heat losses from the storage tank were determined, i.e. a decrease in temperature during periods with and without the consumption of hot water by the residents. During this period, a temperature higher than 80°C was observed several times in the hot water tank. In two parts of the hot water tank, rhe determined temperature decreases were used to obtain the heat loss amount. In the analyzed period (2 weeks), 9 days were observed with solar heat gains higher than 9 kWh/day. For these days, the value of heat loss from the solar hot water tank was estimated at over 6 kWh/day. This data corresponds to the actual heat demand for hot water preparation in the building at 7.3 kWh/day. The correlation between daily solar heat gains and solar hot water tank heat losses were also determined. In addition, based on the amount of heat losses, the value of the tank loss coefficient was estimated. The obtained value was compared with the manufacturer’s data and reference data.
FUNDING
This work was carried out as part of the statutory activity of the Mineral and Energy Economy Research Institute of the Polish Academy of Sciences.
METADATA IN OTHER LANGUAGES:
Polish
Wpływ nadmiernych uzysków solarnych na straty ciepła z zasobnika cwu – studium przypadku
energia słoneczna, energia odnawialna, płaskie kolektory słoneczne, zasobnik ciepłej wody, współczynnik strat ciepła z zasobnika
Analiza aspektów pracy instalacji solarnej została przeprowadzona na przykładzie domu jednorodzinnego w województwie małopolskim w Polsce. W analizowanym budynku jednorodzinnym znajduje się kocioł gazowy i instalacja solarna złożona z trzech płaskich kolektorów słonecznych. Urządzenia te odpowiadają za przygotowanie ciepłej wody użytkowej magazynowanej w zasobniku o pojemności 210 dm3. Instalacja powstała w 2012 roku, w 2014 roku została opomiarowana pod kątem uzysków solarnych. W latach 2015–2019 mierzono uzyski solarne, były one wyższe niż 340 kWh/m2 powierzchni absorbera. Podczas dwutygodniowego okresu w czerwcu 2015 roku mierzono także natężenie promieniowania słonecznego na płaszczyźnie poziomej i temperaturę w 4 różnych punktach zasobnika ciepłej wody. Na tej podstawie określono straty ciepła z zasobnika, tj. spadek temperatury w zasobniku w okresach z i bez poboru ciepłej wody użytkowej przez mieszkańców. W tym okresie zanotowano temperaturę wyższą niż 80°C w zasobniku tylko przez kilka stosunkowo krótkich okresów. Wyznaczone spadki temperatury w dwóch częściach zasobnika ciepłej wody użytkowej użyto do określenia ilościowych strat ciepła. W analizowanym okresie (2 tygodnie) zaobserwowano 9 dni z uzyskami solarnymi wyższymi niż 9 kWh/dzień. Dla tych dni oszacowano wartości strat ciepła z zasobnika na poziomie powyżej 6 kWh/dzień. Dane te korespondują z rzeczywistym zapotrzebowaniem na ciepło do przygotowania ciepłej wody użytkowej w budynku na poziomie 7,3 kWh/dzień.
Określono także zależności między dziennymi uzyskami solarnymi a stratami ciepła z zasobnika (korelacja). Ponadto bazując na wielkościowych stratach ciepła, oszacowano wielkość współczynnika strat ciepła z zasobnika. Uzyskaną wartość porównano z danymi producenta i danymi referencyjnymi.
REFERENCES (35)
1.
Baccoli et al. 2018 – Baccoli, R., Frattolillo, A., Mastino, C., Curreli, S. and Ghiani, E. 2018. A comprehensive optimization model for flat solar collector coupled with a flat booster bottom reflector based on an exact finite length simulation model. Energy Conversion and Management Vol. 164, pp. 482–507.
3.
Calise et al. 2019 – Calise, F., Figaj, R.D. and Vanoli, L. 2019. Energy performance of a low-cost Photo-Voltaic/Thermal (PVT) collector with and without thermal insulation. IOP Conference Series: Earth and Environmental Science Vol. 214, pp. 1–12, DOI: 10.1088/1755-1315/214/1/012116.
4.
Chmielniak, T. 2019. Wind and solar energy technologies of hydrogen production – a review of issues. Polityka Energetyczna – Energy Policy Journal Vol. 22, Iss. 4, pp. 5–20.
5.
Chwieduk, D. 2010. Solar energy use for thermal application in Poland. Polish Journal of Environmental Studies Vol. 19, No. 3, pp. 473–477.
6.
Drobnik et al. 2019 – Drobnik, P., Mirowski, T. and Kopeć, A. 2019. Economic and environmental benefits from carbonized biomass use for energy purposes – Case study for the community from southern part of Poland. IOP Conference Series: Earth and Environmental Science Vol. 214, DOI: 10.1088/1755-1315/214/1/012106.
7.
European Norm, B.S. 2007. Heating systems in buildings — Method for calculation of system energy requirements and system efficiencies. Management Vol. CEN/TC 228.
9.
Fan, J. and Furbo, S. 2012. Buoyancy driven flow in a hot water tank due to standby heat loss. Solar Energy Vol. 86, No. 11, pp. 3438–3449.
10.
Fiaschi et al. 2019 – Fiaschi, D., Manfrida, G., Petela, K. and Talluri, L. 2019. Thermo-electric energy storage with solar heat integration: Exergy and exergo-economic analysis. Energies Vol. 12, No. 4, DOI: 10.3390/en12040648.
11.
Figaj et al. 2019 – Figaj, R., Szubel, M., Przenzak, E. and Filipowicz, M. 2019. Feasibility of a small--scale hybrid dish/flat-plate solar collector system as a heat source for an absorption cooling unit. Applied Thermal Engineering Vol. 163, DOI: 10.1016/j.applthermaleng.2019.114399.
12.
Freeman et al. 2015 – Freeman, J., Hellgardt, K. and Markides, C.N. 2015. An assessment of solar-powered organic Rankine cycle systems for combined heating and power in UK domestic applications. Applied Energy Vol. 138, pp. 605–620.
13.
Hansen et al. 2019 – Hansen, P., Liu, X. and Morrison, G.M. 2019. Agent-based modelling and sociotechnical energy transitions: A systematic literature review. Energy Research and Social Science Vol. 49, pp. 41–42.
14.
Jeleński et al. 2020 – Jeleński, T., Dendys, M., Tomaszewska, B. and Pająk, L. 2020. The Potential of RES in the Reduction of Air Pollution: The SWOT Analysis of Smart Energy Management Solutions for Krakow Functional Area (KrOF). Energies Vol. 13(7), DOI: 10.3390/en13071754.
15.
Kryzia et al. 2016 – Kryzia, D., Gawlik, L. and Pepłowska, M. 2016. Conditions for development of clean technologies of energy generation from fossil fuels (Uwarunkowania rozwoju czystych technologii wytwarzania energii z paliw kopalnych). Polityka Energetyczna – Energy Policy Journal Vol. 19, Iss. 4, pp. 63–74 (in Polish).
16.
Kryzia, D. and Pepłowska, M. 2019. The impact of measures aimed at reducing low-stack emission in Poland on the energy efficiency and household emission of pollutants. Polityka Energetyczna – Energy Policy Journal Vol. 22, Iss. 2, pp. 121–132.
17.
Kuta et al. 2016 – Kuta, M., Matuszewska, D. and Wójcik, T.M. 2016. The role of phase change materials for the sustainable energy. E3S Web of Conferences Vol. 10, DOI: 10.1051/e3sconf/20161000068.
18.
Matuszewska et al. 2017 – Matuszewska, D., Kuta, M. and Górski, J. 2017. Cogeneration – Development and prospect in Polish energy sector. E3S Web of Conferences Vol. 14, DOI: 10.1051/e3sconf/20171401021.
19.
Matuszewska et al. 2014 – Matuszewska, D., Sztekler, K. and Gorski, J. 2014. An influence of low-stability region on dense gas phenomena and their peculiarities in the ORC fluids. MATEC Web of Conferences Vol. 18, DOI: 10.1051/matecconf/20141803005.
20.
Mehdaoui, et al. 2014 – Mehdaoui, F., Hazami, M., Naili, N. and Farhat, A. 2014. Parametric study of a solar heating system used for buldings air heating. IREC 2014 – 5th International Renewable Energy Congress, pp. 1–6.
21.
Ministry of Development 2015. Regulation of the Minister of Infrastructure and Development of 27 February 2015 on the methodology for determining the energy performance of a building or part of a building, and energy performance certificates (Rozporządzenie Ministra Infrastruktury i Rozwoju z dnia 27 lutego 2015 r. w sprawie metodologii wyznaczania charakterystyki energetycznej budynku lub części budynku oraz świadectw charakterystyki energetycznej). Journal of Laws of the Republic of Poland. [Online]
http://prawo.sejm.gov.pl/isap.... [Accessed: 2020-03-22] (in Polish).
22.
Olczak et al. 2018 – Olczak, P., Kryzia, D., Pepłowska, M. and Olek, M. 2018. Influence of Inclination Angle and its Adjustment Time on Insolation of Collector or Photovoltaic Panel. District Heating Heating Ventilatio Vol. 49, No. 12, pp. 506–509.
23.
Olczak et al. 2020a – Olczak, P., Matuszewska, D. and Zabagło, J. 2020a. The Comparison of Solar Energy Gaining Effectiveness between Flat Plate Collectors and Evacuated Tube Collectors with Heat Pipe: Case Study. Energies Vol. 13, No. 7, DOI: 10.3390/en13071829.
24.
Olczak et al. 2020b – Olczak, P., Olek, M. and Kryzia, D. 2020b. The ecological impact of using photothermal and photovoltaic installations for DHW preparation. Polityka Energetyczna – Energy Policy Journal Vol. 23, Iss. 1, pp. 65–74.
25.
Olczak et al. 2016 – Olczak, P., Porzuczek, J. and Kandefer, S. 2016. Passive Sun Tracking of a Single Evacuated Tube Collector with the Focusing Mirror. Proceedings of 2016 IEEE International Conference and Renewable Energy ICPRE 2016 Vol. II, IEEE, Szanghaj, pp. 611–615.
26.
Olczak et al. 2015 – Olczak, P., Zabagło, J., Kandefer, S. and Dziedzic, J. 2015. Influence of Solar Installation with Flat-Plate Collectors in a Detached House on Pollutants Emission and Waste Stream. Between Evolution and Revolution – in Search of an Energy Strategy, Poznań: WAT, pp. 739–752.
27.
Olek et al. 2016 – Olek, M., Olczak, P. and Kryzia, D. 2016. The sizes of Flat Plate and Evacuated Tube Collectors with Heat Pipe area as a function of the share of solar system in the heat demand. E3S Web of Conferences Vol. 10, DOI: 10.1051/e3sconf/20161000139.
28.
Piwowar, A. and Dzikuć, M. 2019. Development of Renewable Energy Sources in the Context of Threats Resulting from Low-Altitude Emissions in Rural Areas in Poland: A Review. Energies Vol. 12, No. 18, DOI: 10.3390/en12183558.
29.
PROVA 2020. PROVA 800 Multi-Input Thermometer/Datalogger. PROVA. [Online] www.prova.com.tw/product_detail.asp?seq=23 [Accessed: 2020-05-18].
30.
Sacharczuk, J. and Taler, D. 2019. Numerical and experimental study on the thermal performance of the concrete accumulator for solar heating systems. Energy Vol. 170, pp. 967–977.
31.
Smol et al. 2018 – Smol, M., Avdiushchenko, A., Kulczycka, J. and Nowaczek, A. 2018. Public awareness of circular economy in southern Poland: Case of the Malopolska region. Journal of Cleaner Production Vol. 197, pp. 1035–1045.
32.
Sokhansefat et al. 2018 – Sokhansefat, T., Kasaeian, A., Rahmani, K., Heidari, A.H., Aghakhani, F. and Mahian, O. 2018. Thermoeconomic and environmental analysis of solar flat plate and evacuated tube collectors in cold climatic conditions. Renewable Energy Vol. 115, pp. 501–508.
33.
Sornek et al. 2017 – Sornek, K., Filipowicz, M., Goryl, W., Mokrzycki, E., Mirowski, T. and Duraczyński, M. 2017. The analysis of the wind potential in selected locations in the southeastern Poland. E3S Web of Conferences Vol. 14, DOI: 10.1051/e3sconf/20171401014.
34.
Szurlej et al. 2014 – Szurlej, A., Kamiński, J., Janusz, P., Iwicki, K. and Mirowski, T. 2014. Gas-fired power generation in Poland & energy security (Rozwój energetyki gazowej w polsce a bezpieczeństwo energetyczne). Rynek Energii Vol. 6, pp. 33–38 (in Polish).
35.
Żołądek et al. 2019 – Żołądek, M., Filipowicz, M., Sornek, K. and Figaj, R.D. 2019. Energy performance of the photovoltaic system in urban area – Case study. IOP Conference Series: Earth and Environmental Science, DOI: 10.1088/1755-1315/214/1/012123.